INDIAN ASSOCIATION OF PHYSICS TEACHERS
 NATIONAL STANDARD EXAMINATION IN PHYSICS (NSEP)2023 (QUESTION PAPER CODE 64)

Date : 26/11/2023

Time : 120 Minute

Maximum Marks: 216
Write the question paper code (mentioned above) on YOUR OMR Answer Sheet (in the space provided), otherwise your Answer Sheet will NOT be evaluated, Note that the same Question paper code appears on each page of the question paper.

INSTRUCTIONS

1. Use of mobile phone, smart watches, and iPad during examination is STRICTLY PROHIBITED.
2. In addition to this question paper, you are given OMR Answer Sheet along with candidate's copy.
3. On the OMR sheet. make all the entries carefully in the space provided ONLY in BLOCK CAPITALS as well as by properly darkening the appropriate bubbles.
Incomplete/ incorrect/ carelessly filled information may disqualify your candidature.
4. On the OMR Answer sheet, use only BLUE or BLACK BALL POINT PEN for making entries and filling bubbles.
5. Your fourteen-digit roll number and date of birth entered in the OMR Answer sheet shall remain your login credentials means login id and password respectively for accessing your performance result.
6. Question paper has two parts. In part A1 (Q. No. 1 to 48) each question has four alternatives, out of which only one is correct. Choose the correct alternative (s) and fill the appropriate bubbles(s), as shown.
Q.No. 22

c

In part A2 (Q. No. 49 to 60) each question has four alternative out of which any number of alternative (s) (1, 2, 3, or 4) may be correct. You have to choose all correct alternative(s) and fill the appropriate bubbles(s), as shown
Q.No. 54

7. For Part A1, each correct answer carries 3 marks whereas 1 mark will be deducted for each wrong answer. In Part A2, you get 6 marks. If all the correct alternative are marked. No negative marks in this part.
8. Rough work should be done only in the space provided. There are __printed pages in this paper.
9. Use of non-programmable scientific calculator is allowed
10. No candidate should leave the examination hall before the completion of the examination.
11. After submitting answer paper, take away the question paper \& candidate's copy of OMR for your reference

Please DO NOT make any mark other than filling the appropriate bubbles properly in the space provided on the OMR answer sheet.
OMR answer sheets are evaluated using machine, hence CHANGE OF ENTRY IS NOT ALLOWED, Scratching or overwriting may result in wrong score.
DO NOT WRITE ON THE BACK SIDE OF THE OMR ANSWER SHEET.

Name of Student :
Batch :
Enrolment No. $\begin{aligned} & \\ & \end{aligned}$

INDIAN ASSOCIATION OF PHYSICS

TEACHERS

NATIONAL STANDARD EXAMINATION IN PHYSICS (NSEP) 2023

PAPER CODE-64

Date of Examination - $26^{\text {th }}$ November, 2023

Attempt All Sixty Questions
(NSEP) PART : A-1

ONLY ONE OUT OF FOUR OPTIONS IS CORRECT, BUBLE THE CORRECT OPTION.

[Q.1] Heavy stable nuclei have more neutrons than protons. This is because of the fact that
[:A] neutrons are heavier than protons
[:B] the electrostatic forces between protons are repulsive
[:C] neutrons decay into protons through beta decay
[:D] the nuclear forces between neutrons are weaker than those between protons
[:ANS] B
[:SOLN] In nucleus, there are two types of force. Nuclear force ->attractive Force among protons -> repulsive in heavy nucleus, repulsive force is more than attractive.

But for stable heavy nucleus, these repulsive force is minimized by neutrons.
[Q.2] Anequi - concave lens of radii of curvature of the two surfaces numerically equal to 7 cm and refractive index $\mu=1.5$ has a small silver dot on the rear surface. As a result of this, a ray of light incident parallel to the principal axis gets reflected from its rear surface and then reflected also from the inner front surface. The ray after the second reflection emerges out of the thin lens and appears to focus at a point P on the principal axis. The point P lies
[:A] 1 cm before the lens
[:B] 2 cm before the lens
[:C] 1 cm beyond the lens
[:D] at none of these
[:ANS] C
[:SOLN] The ray undergoes 2 reflection and 3 refractions
$\therefore \frac{1}{\mathrm{f}_{\text {eq }}}=\frac{3}{\mathrm{f}_{\mathrm{l}}}-\frac{2}{\mathrm{f}_{\mathrm{m}}}$
$\frac{1}{f_{l}}=(1.5-1) \frac{2}{R}=\frac{1}{R}$
$\mathrm{f}_{\mathrm{I}}=7 \mathrm{~cm}$
$f_{m}=\frac{R}{2}=-\frac{7}{2} c m$
$\therefore \frac{1}{f_{e q}}=\frac{3}{7}+\frac{2}{7} \times 2=\frac{7}{7}$
$f_{\text {eq }}=1 \mathrm{~cm}$
\therefore It will be focused 1 cm beyond the lens.
[Q.3] Light emerges out uniformly from a point source placed at the focus of a concave mirror to give out a spherical wave. Front. As a result of reflection of the paraxial rays from the concave mirror, according to Huygen's theory the reflected light is in the form of a
[:A] spherical wave front with centre at the focus, and radius equal to the radius of curvature of the mirror
[:B] spherical wave front with centre at the focus, and radius equal to the focal length of the mirror
[:C] cylindrical wave front with its axis coinciding with the principal axis of the mirror.
[:D] plane wave front perpendicular to the reflected beam
[:ANS] D
[:SOLN]

After reflection the light goes parallel to the principle axis. In case of parallel light, the shape of wavefront is plane
[Q.4] An equi - convex lens of focal length ' f ' is cut along a diameter, in two halves (pieces). The two identical pieces of the lens are now arranged as shown in the figure on a common axis at a separation f between the two. The image of an object $A B$ placed at $x=0$ cannot be formed at the distance $x=\zeta$ from the object along the axis, for the value of ζ as

[:A] $\zeta=2 f$
[:B] $\zeta=3 f$
[:C] $\zeta=4 \mathrm{f}$
[:D] $\zeta=\infty$
[:ANS] A
[:SOLN]

[Q.5] During the processes of annihilation of a stationary electron of mass m_{0} with a stationary positron of equal mass, a radiation is emitted. The wavelength of the resulting radiation is
[:A] $\frac{h}{\mathrm{~m}_{0} \mathrm{C}}$
[:B] $\frac{2 \mathrm{~h}}{\mathrm{~m}_{0} \mathrm{c}}$
[:C] $\frac{\mathrm{m}_{0}}{\mathrm{hc}}$
[:D] $\frac{\mathrm{m}_{0} \mathrm{c}}{\mathrm{h}}$
[:ANS] A
[:SOLN] \Rightarrow From conservation of momentum, photons will travel in opposite direction with equal magnitude of momentum $\frac{\mathrm{hc}}{\lambda}$
\Rightarrow From energy conservation
$\frac{h c}{\lambda}+\frac{h c}{\lambda}=m_{0} c^{2}+m_{0} c^{2}$
$\lambda=\frac{h}{\mathrm{~m}_{0} \mathrm{c}}$
[Q.6] The convex surface of a concavo - convex tens of refractive index 1.5 and radii of curvature $R_{1}=20 \mathrm{~cm}$ and $R_{2}=40 \mathrm{~cm}$ has been silvered so as to make it reflecting. The distance of a luminous object from the reflecting system when placed in front of it on its principal axis, so that the image coincides with the object is
[:A] 40 cm
[:B] 32 cm
[:C] 16 cm
[:D] 8 cm
[:ANS] C
[:SOLN]

The object should be at 2 fnet, so that the image coincides with it.

$$
\begin{aligned}
& \text { Now }\left(-\frac{1}{f_{\text {net }}}\right)=2\left(\frac{1}{f_{\text {lens }}}\right)+\left(-\frac{1}{f_{\text {mirror }}}\right) \\
& -\frac{1}{f_{\text {net }}}=2(15-1)\left(\frac{-1}{40}-\frac{1}{-20}\right)+\frac{-1}{-10} \\
& f_{\text {net }}=-8 \mathrm{~cm} \\
& 2 \times f_{\text {net }}=16 \mathrm{CM}
\end{aligned}
$$

[Q.7] Two balls are projected from the top of a cliff with equal initial speed u. One starts at angle θ above the horizontal while the other starts at angle θ below. Difference in their ranges on ground is
[:A] $2 \frac{\mathrm{u}^{2} \tan \theta}{\mathrm{~g}}$
[:B] $\frac{u^{2} \sin 2 \theta}{2 g}$
[:C] $\frac{u^{2} \sin 2 \theta}{g}$
[:D] $\frac{u^{2} \cos 2 \theta}{g}$
[:ANS] C
[:SOLN]

$\Rightarrow \Delta \mathrm{R}=\mathrm{R}_{1}-\mathrm{R}_{2}=\mathrm{u} \cos \theta\left(\mathrm{t}_{1}-\mathrm{t}_{2}\right)$
$u \cos \theta\left(\frac{2 u \sin \theta}{g}\right)$
$=\frac{u^{2} \sin 2 \theta}{g}$
[Q.8] A solid block of mass 3 kg is suspended from the bottom of a 5 kg block with the help of a rope $A B$ of mass 2 kg as shown in the figure. When pulled by an upward force F, the whole system experiences an upward acceleration $a=2.19 \mathrm{~ms}^{-2}$. Choose the correct option

[:A] Net force on the rope $A B$ is 24 N
[:B] Tension at the midpoint of the rope AB is 418 N
[:C] Force F is 20 N
[:D] Force F is 60 N
[:ANS] B
[:SOLN] $\quad a=\frac{F-10 g}{10}$
$\Rightarrow \quad 21.9=F-100$
$\Rightarrow \mathrm{F}=121.9 \mathrm{~N}$
(a) $\mathrm{F}_{\mathrm{AB}}=2 \times 2.19=4.38 \mathrm{~N}$
(b) $\mathrm{T}-4 \mathrm{~g}=4 \times 2.19$
$\Rightarrow \quad \mathrm{T}=48.76 \mathrm{~N}$
[Q.9] A block P of mass 0.4 kg is attached to a vertical rotating spindle by two strings $A P$ and $B P$ of equal length 1.0 m as shown in the figure. The period of rotation is 1.2 s . Tension T_{1} and T_{2} in string AP and BP are

[:A] $\mathrm{T}_{1}=15.86 \mathrm{~N} \mathrm{~T}_{2}=10.97 \mathrm{~N}$
[:B] $\mathrm{T}_{1}=15.86 \mathrm{~N} \mathrm{~T}_{2}=3.04 \mathrm{~N}$
[:C] $\mathrm{T}_{1}=7.94 \mathrm{~N} \mathrm{~T}_{2}=3.03 \mathrm{~N}$
$[: D] T_{1}-T_{2}=5.48 \mathrm{~N}$
[:ANS] C
[:SOLN]

For $O^{\text {lar }}$ motion
$\mathrm{T}_{1} \cos \theta_{1}+\mathrm{T}_{2} \cos \theta=m \omega^{2} r$
$\sin \theta=\frac{0.8}{1}=\frac{4}{5}$
$\theta=53^{\circ}$
$\mathrm{T}_{1} \cos 53^{\circ}+\mathrm{T}_{2} \cos 53^{\circ}=m \omega^{2} \mathrm{r}$
$r=1 \cos 53^{\circ}=3 / 5$
$\omega=\frac{2 \pi}{\mathrm{~T}}=\frac{2 \pi}{1.2}=\frac{10 \pi}{6}=\frac{5}{3} \pi$
$\mathrm{T}_{1} \times \frac{3}{5}+\mathrm{T}_{2} \times \frac{3}{5}=0.4 \times\left(\frac{5}{3} \pi\right)^{2} \times \frac{3}{5}$
$\Rightarrow \mathrm{T}_{1}+\mathrm{T}_{2}=\frac{4}{10} \times \frac{25}{9} \pi^{2}=\frac{10}{9} \pi^{2}$
$\mathrm{T}_{1} \sin \theta=\mathrm{T}_{2} \sin \theta+\mathrm{mg}$
$\Rightarrow \mathrm{T}_{1}=\mathrm{T}_{2}+\frac{\mathrm{mg}}{\sin \theta}$
$=T_{2}+\frac{0.4 \times 10}{\sin 53^{\circ}}=T_{2}+\frac{4}{4 / 5}$
$T_{1}=T_{2}+5$
From equation (i) and (ii) -
$T_{2}+T_{2}+5=\frac{10}{9} \pi^{2}$
$\Rightarrow 2 \mathrm{~T}_{2}=\frac{10}{9} \pi^{2}-5$
$\Rightarrow \mathrm{T}_{2}=2.97$

$$
\mathrm{T}_{2}=3
$$

$$
\mathrm{T}_{1} \approx 8
$$

[Q.10] A particle of mass m moves in a straight line under the influence of a certain force such that the power (P) delivered to it remains constant. Starting from rest, the straight line distance traveled by the moving particle in time t is
[:A] $\left(\frac{8 \mathrm{Pt}^{3}}{27 \mathrm{~m}}\right)^{\frac{1}{2}}$
[:B] $\left(\frac{4 \mathrm{Pt}^{3}}{27 \mathrm{~m}}\right)^{\frac{1}{2}}$
$[: C]\left(\frac{8 \mathrm{Pt}^{2}}{9 m}\right)^{\frac{1}{2}}$
[:D] $\left(\frac{8 \mathrm{Pt}^{3}}{9 \mathrm{~m}}\right)^{\frac{1}{2}}$
[:ANS] D
[:SOLN] $\mathrm{P}=$ constant (C)
$\mathrm{F} \cdot \mathrm{V}=\mathrm{C}$
$\Rightarrow \mathrm{m}\left(\frac{\mathrm{dv}}{\mathrm{dt}}\right) \mathrm{V}=\mathrm{C}$
$\Rightarrow \quad \mathrm{mvdv}=\mathrm{Cdt}$
$\Rightarrow \mathrm{m} \frac{\mathrm{v}^{2}}{2}=\mathrm{Ct}$
$\Rightarrow \mathrm{v}^{2}=\frac{2 \mathrm{C}}{\mathrm{m}} \mathrm{t}$
$\Rightarrow \quad v=\sqrt{\frac{2 P}{m}} \mathrm{t}$
$\Rightarrow \quad \frac{\mathrm{dx}}{\mathrm{dt}}=\sqrt{\frac{2 \mathrm{P}}{\mathrm{m}}}(\mathrm{t})^{1 / 2}$
$\Rightarrow \mathrm{dx}=\sqrt{\frac{2 \mathrm{P}}{\mathrm{m}}}(\mathrm{t})_{\mathrm{dt}}^{1 / 2}$
$\Rightarrow x=\int d x=\sqrt{\frac{2 P}{m}} \times \frac{t^{3 / 2}}{3 / 2}$
$x=\left(\sqrt{\frac{2 \mathrm{P}}{\mathrm{m}}}\right) \times \frac{2}{3} \times \mathrm{t}^{3 / 2}$
$=\sqrt{\frac{2 \mathrm{P}}{\mathrm{m}} \times \frac{4}{9}} \mathrm{t}^{3 / 2}$
$x=\left(\frac{8 P}{9 m} t^{3}\right)^{1 / 2}$
[Q.11] A bullet is fired vertically up with half the escape speed from the surface of the Earth. The maximum altitude reached by it (ignore the effect of rotation of the Earth) in terms of radius of Earth R is
[:A] $\frac{R}{3}$
[:B] $\frac{R}{2}$
[:C] R
[:D] $\frac{2 R}{3}$
[:ANS] A
[:SOLN]

$V_{e}=\sqrt{2 g R}$
$=\sqrt{\frac{2 G M}{R}}$
$\mathrm{U}_{1}+\mathrm{k}_{1}=\mathrm{U}_{2}+\mathrm{k}_{2}$
$\Rightarrow \quad \frac{-\mathrm{GMm}}{\mathrm{R}}+\frac{1}{2} \mathrm{~m} \times\left(\frac{2 \mathrm{GM}}{\mathrm{R}}\right) \frac{1}{4}=\frac{-\mathrm{GMm}}{\mathrm{R}+\mathrm{h}}$
$\Rightarrow \quad \frac{-\mathrm{GMm}}{\mathrm{R}}+\frac{1}{4} \frac{\mathrm{GMm}}{\mathrm{R}}=-\frac{\mathrm{GMm}}{\mathrm{R}+\mathrm{h}}$
$\Rightarrow \quad \frac{+3 G M m}{4 R}=\frac{1-G M m}{R+h}$
$\Rightarrow \mathrm{R}+\mathrm{h}=+\frac{4 \mathrm{R}}{3}$
$\Rightarrow \quad h=\frac{4 \mathrm{R}}{3}-\mathrm{R}=\frac{\mathrm{R}}{3}$
$h=R / 3$
[Q.12] A can is a hollow cylinder of radius R and height h. Its ends are sealed with circular sheets of the same material. The can is made of thin sheet metal of areal mass density $\sigma\left(\mathrm{kg} / \mathrm{m}^{2}\right)$. Moment of inertia of this closed can about its vertical axis of symmetry is

[:A] $\pi R^{3} \sigma(h+2 R)$
$[: B] \pi R^{3} \sigma(h+R)$
$[: C] \pi R^{3} \sigma(2 h+R)$
[:D] $2 \pi R^{3} \sigma(h+R)$
[:ANS] C
[:SOLN]

$I=M_{1} R^{2}+2\left(\frac{m_{1} R^{2}}{2}\right)$
$M_{1}=6(2 \pi R \times h)$
$M_{2}=6\left(\pi R^{2}\right)$
$I=6(2 \pi R h) R^{2}+6\left(\pi R^{2}\right) R^{2}$
$=26 \pi h R^{3}+6 \pi R^{4}$
$=6 \pi R^{3}(2 h+R)$
[Q.13] A particle of mass m is revolving in a horizontal circle on a frictionless horizontal table with the help of a string tied to it and passing through a hole at the center of the table. Two equal masses M are attached to the other end of the string as shown. If one of the hanging masses M is removed gently. The radius of the circular motion of m

[:A] decreases by a factor 1.414
[:B] increases by a factor 1.260
[:C] increases by a factor 1.414
[:D] does not change because of the conservation of angular momentum
[:ANS] B
[:SOLN] $\mathrm{mw}_{1}^{2} \mathrm{r}_{1}=2 \mathrm{Mg}$
After,
$m w_{2}^{2} r_{2}=M g$
Equation (i) and (ii) :
$\frac{m w_{1}^{2} r_{1}}{m w_{2}^{2} r_{2}}=\frac{2 M g}{M g}$
$\Rightarrow\left(\frac{w_{1}}{w_{2}}\right)^{2}\left(\frac{r_{1}}{r_{2}}\right)=2$
From conservation of angular momentum.
$m_{1} w_{1} r_{1}^{2}=m_{2} w_{2} r_{2}^{2}$

$$
\begin{aligned}
& \Rightarrow \frac{w_{1}}{w_{2}}=\left(\frac{r_{2}}{r_{1}}\right)^{2} \\
& \text { So, }\left(\frac{r_{2}}{r_{1}}\right)^{2}\left(\frac{r_{1}}{r_{2}}\right)=2 \\
& \Rightarrow\left(\frac{r_{2}}{r_{1}}\right)^{3}=2 \\
& \Rightarrow \frac{r_{2}}{r_{1}}=(2)^{1 / 3} \\
& \Rightarrow r_{2}=(2)^{1 / 3} r_{1} \\
& r_{2}=1.25 r_{1}
\end{aligned}
$$

[Q.14] Three stars of equal mass M rotate in a circular path of radius r about their center of mass such that the stars remain equidistant from each other. The common angular speed (ω) of rotation of the stars can be expressed as
$[: A]\left(\frac{G M \sqrt{3}}{r^{3}}\right)^{\frac{1}{2}}$
[:B] $\left(\frac{G M}{r^{3}}\right)^{\frac{1}{2}}$
[:C] $\left(\frac{\mathrm{GM}}{\mathrm{r}^{3}} \frac{2}{\sqrt{3}}\right)^{\frac{1}{2}}$
[:D] $\left(\frac{G M}{r^{3}} \frac{M}{\sqrt{3}}\right)^{\frac{1}{2}}$
[:ANS] D
[:SOLN]

$\frac{R}{\sin 20}=\frac{r}{\sin 30}$
$R=\frac{r}{1 / 2} \times \frac{\sqrt{3}}{2}=\sqrt{3} r$
$\mathrm{F}=\frac{\mathrm{GM}^{2}}{3 \mathrm{r}^{2}}$
$\theta=30^{\circ}$
$F_{\text {net }}=2 F \cos 30^{\circ}$
Now, $2 \mathrm{~F} \cos 30^{\circ}=m w^{2} r$
$2 \times \frac{\mathrm{GM}^{2}}{3 \mathrm{r}^{2}} \times \frac{\sqrt{3}}{2}=\mathrm{mw}^{2} \mathrm{r}$
$\Rightarrow \mathrm{w}^{2}=\frac{\mathrm{GM}}{\sqrt{3} \mathrm{r}^{3}}$
$\Rightarrow \mathrm{w}=\left(\frac{\mathrm{GM}}{\sqrt{3} \mathrm{r}^{3}}\right)^{\gamma_{2}}$
[Q.15] The density of a liquid is ρ at the surface. The bulk modulus of the liquid is B. The increase $\Delta \rho$ in the density of the liquid at a depth h from the surface is (with $\Delta \rho \ll \rho$)
[:A] $\Delta \rho=\frac{\rho^{2} g h}{B}$
[:B] $\Delta \rho=\frac{\rho g h}{B}$
[:C] $\Delta \rho=\frac{\rho g h}{2 B}$
[:D] $\Delta \rho=\frac{2 \rho^{2} g h}{B}$
[:ANS] A
[:SOLN] $\rho=\frac{M}{v}$
$\Delta \rho=-\frac{M}{v^{2}} \cdot \Delta v=-\rho \cdot \frac{\Delta v}{v}$
$\frac{\Delta \rho}{\rho}=\frac{-\Delta v}{v}$
$B=-v \frac{\Delta P}{\Delta v}$
$\Rightarrow \quad-\frac{\Delta \mathrm{v}}{\mathrm{v}}=\frac{\Delta \mathrm{P}}{\mathrm{B}}$, put in (i)
$\frac{\Delta \rho}{\rho}=\frac{\Delta P}{B} \Rightarrow \Delta \rho=\frac{\rho \Delta P}{B}$
$\Rightarrow \Delta \rho=\frac{\rho \cdot \rho \mathrm{gh}}{\mathrm{B}}$
$\Rightarrow \quad \Delta \rho=\frac{\rho^{2} \mathrm{gh}}{\mathrm{B}}$
[Q.16] Water flows at $1.2 \mathrm{~m} / \mathrm{s}$ through a hose of diameter 1.59 cm . The time required to fill a cylindrical container of radius 2 m to a height of $\mathrm{h}=1.25 \mathrm{~m}$ will be nearly
[:A] 18. 3 hour
[:B] 2.7 hour
[:C] 550 min
[:D] 220 min

[:ANS] A

[:SOLN] volume flow rate $=A v$
Time taken $=\frac{\text { volume of cylinder }}{A_{v}}$
$=\frac{\pi(2)^{2} \times 1.25 \times 4}{1.2 \times \pi(1.59)^{2} \times 10^{-4}}$
$=18.3$ hours
[Q.17] A police car, moving at speed of $108 \mathrm{~km} /$ hour, approaches a truck moving at $72 \mathrm{~km} /$ hour in opposite direction. The natural frequency of the siren of the car is 800 Hz and the surrounding temperature is $27^{\circ} \mathrm{C}$. The frequency heard by the truck driver as the car passes him
[:A] remain unchanged
[:B] decreases nearly by 232 Hz
[:C] increases nearly by 231 Hz
[:D] decreases nearly by 260 Hz
[:ANS] B
[:SOLN] $v=\sqrt{\frac{\gamma R T}{\mathrm{M}_{0}}}=\sqrt{\frac{1.4 \times 8.3 \times 300}{28 \times 10^{-3}}}=353 \mathrm{~m} / \mathrm{s}$

$f^{\prime}=\left(\frac{353+20}{353-30}\right) \times 800$
$f^{\prime}=923.8 \approx 924 \mathrm{~Hz}$

$f^{\prime \prime}=\left(\frac{353-20}{353+30}\right) \times 800$
f" $=696 \mathrm{~Hz}$
$\Delta f=f^{\prime}-f^{\prime \prime}=228 \mathrm{~Hz}$, decreased
[Q.18] A rope of mass M and length L hangs vertically. Time needed for a transverse pulse to travel from its bottom end to the support is
[:A] $\sqrt{\frac{2 L}{g}}$
[:B] $2 \sqrt{\frac{L}{g}}$
[:C] $\sqrt{\frac{L}{g}}$
[:D] $\sqrt{\frac{L}{2 g}}$
[:ANS] B
[:SOLN]

$$
\begin{aligned}
& v=\sqrt{\frac{T}{\mu}} \\
& \Rightarrow v=\sqrt{\frac{\mu \cdot y \cdot g}{\mu}} \\
& y \\
& \Rightarrow v=\sqrt{g y} \\
& \because \frac{d y}{d t}=\sqrt{g y} \\
& \int_{0}^{T} d t=\int_{0}^{L} \frac{d y}{\sqrt{g y}} \\
& T=2 \sqrt{\frac{L}{g}}
\end{aligned}
$$

[Q.19] The figure shows a smooth tunnel $A B($ length $=2 \ell)$ in a uniform density planet (say Earth) of mass M and radius R. A small ball of mass m is released from rest at the end A of the tunnel. Acceleration due to gravity at surface of the planet is g . Time taken by the ball to reach the end B is

[:A] $\pi \sqrt{\frac{R}{g}}$
[:B] $2 \sqrt{\frac{\ell}{g}}$
[:C] $\frac{\pi}{2} \sqrt{\frac{2 R}{g}}$
[:D] $2 \pi \sqrt{\frac{R}{g}}$
[:ANS] A
[:SOLN] Time period $(T)=2 \pi \sqrt{\frac{R}{g}}$
$t_{A \rightarrow B}=\frac{T}{2}$
$=\pi \sqrt{\frac{R}{g}}$
[:Q.20] When the speaker S_{1} is switched $O N$, the sound intensity at a point P in a room is 80 dB . But when the speaker S_{2} is switched $O N$ (S_{1} is switched OFF), the sound intensity at the same point P in the room is 85 dB . The sound intensity level (in dB) at the same point P in the room, if the two speakers S_{1} and S_{2} are simultaneously switched $O N$, is (consider the speakers to be incoherent)
[:A] 165 dB
[:B] 86.2 dB
[:C] 87.8 dB
[:D] 88.6 dB
[:ANS] B
[:SOLN] $\beta=10 \log _{10} \frac{\mathrm{I}}{\mathrm{I}_{0}}$

$$
\beta_{1}=10 \log \frac{I_{1}}{I_{0}} \Rightarrow I_{1}=10^{8} I_{0}
$$

Similarly

$$
\mathrm{I}_{2}=10^{8.5} \mathrm{I}_{0}
$$

When Both sounds

$$
I=I_{1}+I_{2}
$$

$$
\beta=10 \log \frac{\mathrm{I}}{\mathrm{I}_{0}} \quad \Rightarrow \quad \beta=10 \log \frac{\mathrm{I}_{1}+\mathrm{I}_{2}}{\mathrm{I}_{0}}
$$

$$
\Rightarrow \quad \beta=86.2
$$

[:Q.21] A block B of mass 0.5 kg moving, on a horizontal frictionless table at $2.0 \mathrm{~ms}^{-1}$, collides with a massless pan P (at origin O) and sticks to it. The pan in connected at the end of a horizontal un-stretched (relaxed) spring of force constant $\mathrm{K}=32 \mathrm{Nm}^{-1}$ as shown in figure. After the block collides, the displacement $x(\ell)$ of the block as a function of time t is given by

[:A] $0.25 \cos 8 t \mathrm{~m}$
[:B] $0.25 \sin 8 t \mathrm{~m}$
[:C] $2.50 \sin \frac{t}{8} m$
[:D] $0.50 \sin \frac{\pi}{4} t m$
[:ANS] B
[:SOLN] $\omega=\sqrt{\frac{K}{m}}=\sqrt{\frac{32}{0.5}}=8$
$\mathrm{X}=\mathrm{A} \sin \omega \mathrm{t}$
$X=0.25 \sin 8 \mathrm{t} \quad\left[\begin{array}{l}\because \frac{1}{2} \mathrm{mv}^{2}=\frac{1}{2} K A^{2} \\ \Rightarrow A=0.25 \mathrm{~m}\end{array}\right]$
[:Q.22] Which of the following functions does not represent a traveling wave
[:A] $y=A \sin ^{2}\left[\pi\left(t-\frac{x}{v}\right)\right]$
$[: B] y=A e^{-a t} \cos (k x-\omega t)$
$[: C] y=A \sin \left[(k x)^{2}-(\omega t)^{2}\right]$
$[: D] y=A \cos \left[(k x-\omega t)^{2}\right]$

[:ANS] C

[:SOLN] For traveling wave the wave must be function of $(a x \pm b t) \&$ must be finite \& single valued
(A) $\quad a x \pm b t n y=A \sin ^{2}\left[\pi\left(t-\frac{x}{v}\right)\right]$
(B) $\left.y=A e^{-a t} \cos (k x-\omega t)\right] f(a x \pm b t)$
at $t=0, e^{-a t}=1$
\& at $t=\infty, e^{\text {at }}=0$
so it is finite
(C) $Y=A \sin \left[(k x)^{2}-(\omega t)^{2}\right]$

$$
\neq f(a x \pm b t)
$$

(D)

$$
\begin{array}{r}
\left.(d-) y=A \cos (k x-\omega t)^{2}\right] \\
f(a x \pm b t)
\end{array}
$$

So, option (C) is correct
[:Q.23] Two cannot heat engines are connected in series such that the sink of the first engine is heat source of second. Efficiency of the engines are η_{1} and η_{2} respectively. Net efficiency η of the combination is given by
[:A] $\eta=\eta_{1}+\eta_{2}$
[:B] $\eta=\frac{\eta_{1} \eta_{2}}{\eta_{1}+\eta_{2}}$
$[: C] \quad \eta=\eta_{1}+\eta_{2}\left(1-\eta_{1}\right)$
[:D] $\eta=\eta_{1}-\eta_{2}\left(1-\eta_{1}\right)$
[:ANS] C
[:SOLN]

So, $\eta_{\text {net }}$ (net efficiency)
$\Rightarrow \mathrm{n}_{\text {net }}=\frac{\theta_{1}-\theta_{3}}{\theta_{1}}=1-\frac{\theta_{3}}{\theta_{1}}$
$\Rightarrow \eta_{\text {net }}=1-\left(1-\eta_{1}\right)\left(1-\eta_{2}\right)$
$\Rightarrow \eta_{\text {net }}=1-\left[1-\eta_{1}-\eta_{2}+\eta_{1} \eta_{2}\right]$
$\Rightarrow \mathrm{n}_{\mathrm{et}}=\eta_{1}+\eta_{2}-\eta_{1} \eta_{2}$
$\Rightarrow \eta_{\text {net }}=\eta_{1}+\eta_{2}\left(1-\eta_{1}\right)$
[:Q.24] An air bubble of radius 2 mm at a depth 12 m below the surface of water at temperature of $8^{\circ} \mathrm{C}$, rises to the surface where the temperature is $16^{\circ} \mathrm{C}$. Neglecting the effect of Surface Tension, the radius of the bubble at the surface is estimated to be
[:A] 2.56 mm
[:B] 2.61 mm
[:C] 2.86 mm
[:D] 4.45 mm
[:ANS] B
[:SOLN]

$\frac{P_{1} v_{1}}{R T_{1}}=\frac{P_{2} v_{2}}{R T_{2}}$
\Rightarrow also $v=\frac{4}{3} \pi \mathrm{R}^{3}$
$\Rightarrow v \alpha R^{3}$
$P_{1}=10.33 \mathrm{H}_{2} \& P_{2}=10.33$
$\mathrm{T}_{\mathrm{i}}=273+8=281 \mathrm{~K} \& \mathrm{~T}_{2}=273+16=289 \mathrm{~K}$
$\Rightarrow \frac{(10.33+12)(2)^{3}}{R(281)}=\frac{10.33(r)^{3}}{R(289)}$
$\Rightarrow \mathrm{r}=2.61 \mathrm{~mm}$
[:Q.25] Two soap bubbles of radii a and b coalesce to form a single bubble of radius c under isothermal conditions. If the external pressure is P_{A}, then the Surface Tension (T) of the soap solution is
[:A] $\frac{P_{A}}{4} \frac{\left(c^{3}-a^{3}-b^{3}\right)}{\left(a^{2}+b^{2}-c^{2}\right)}$
[:B] $\frac{\mathrm{P}_{\mathrm{A}}}{2} \frac{\left(a^{3}+b^{3}-c^{3}\right)}{\left(c^{2}-a^{2}-b^{2}\right)}$
$[: C] \frac{P_{A}}{2} \frac{\left(a^{2}+b^{2}-c^{2}\right)}{\left(c^{3}-a^{3}-b^{3}\right)}$
$[: D] \frac{P_{A}}{4} \frac{\left(c^{2}-a^{2}-b^{2}\right)}{(a+b-c)}$
[:ANS] A
[:SOLN]

by $p v=n R T$
$n=\frac{P v}{R T}$
here, $\mathrm{n}_{1}+\mathrm{n}_{2}=\mathrm{n}_{3}$
$\Rightarrow \frac{P_{1} v_{1}}{R T_{1}}+\frac{P_{2} v_{2}}{R T_{2}}=\frac{P_{3} v_{3}}{R T} \quad\left[T_{1}=T_{2}=T\right]$
$\& P_{1}=P_{A}+\frac{4 s}{a} \& P_{2}=P_{A}+\frac{4 s}{b}$
$\& P_{3}=P_{A}+\frac{4 S}{C}$
$\Rightarrow\left(\mathrm{P}_{\mathrm{A}}+\frac{4 \mathrm{~S}}{0}\right) \frac{4}{3} \pi \mathrm{a}^{3}+\left(\mathrm{P}_{\mathrm{A}}+\frac{45}{\mathrm{~b}}\right) \frac{4}{3} \pi \mathrm{~b}^{3}$
$=\left(\mathrm{P}_{\mathrm{A}}+\frac{4 \mathrm{~S}}{\mathrm{C}}\right) \frac{4}{3} \pi \mathrm{C}^{3}$
$\Rightarrow S=\frac{P_{A}\left(a^{3}+b^{3}-c^{3}\right)}{-\left(4 a^{2}+4 b^{2}-4 c^{2}\right)}=\frac{P_{A}}{4}\left(\frac{c^{3}-a^{3}-b^{3}}{a^{2}+b^{2}-c^{2}}\right)$
[:Q.26] An open-end organ pipe 30 cm in length and a closed-end organ pipe 23 cm in length, both of equal diameter, are each sounding their first overtone and both are in unison at 1100 Hz . The speed of sound in air, is estimated to be nearly
[:A] $324 \mathrm{~ms}^{-1}$
[:B] $332 \mathrm{~ms}^{-1}$
[:C] $340 \mathrm{~ms}^{-1}$
[:D] $352 \mathrm{~ms}^{-1}$
[:ANS] D

$$
\frac{3 \lambda_{1}}{4}=0.3 d+0.23
$$

So,
$\nu=f \lambda_{1}$ here
$0.3+0.6 d=\frac{4}{3}(0.3 d+0.23)$
$\Rightarrow 0.3+0.6 \mathrm{~d}=0.4 \mathrm{~d}+\frac{4(0.23)}{3}$
$\Rightarrow 0.6 \mathrm{~d}=0.02$

So, $v=f \lambda_{1}=1100(0.3+0.02)=352 \mathrm{~m} / \mathrm{s}$
[:Q.27] The figure shown a lagged bar $X Y$ of non-uniform cross section. One end X of the bar is maintained at $100^{\circ} \mathrm{C}$ and the other end Y at $0^{\circ} \mathrm{C}$. The variation of temperature along its length from X to Y in steady state is best represented by the curve.

[:A]

[:B]

[:C]

[:D]

[:ANS] B
[:SOLN]

here, $\frac{d \theta}{d t}=-k A \frac{d T}{d x}$
$\Rightarrow \frac{d_{T}}{d x}=\frac{-1}{K A}\left(\frac{d \theta}{d t}\right)$
$\Rightarrow \frac{\mathrm{dT}}{\mathrm{dx}} \alpha \frac{-1}{\mathrm{~A}}$
Slope is negative
\& while A is decreasing so $\left|\frac{d T}{d x}\right| 10 i \mu$ increase

[:Q.28] An ideal gas (n moles) is initially at pressure P and temperature T. It is cooled isochrorically to a pressure $\frac{P}{4}$. The gas is then expanded at a constant pressure so as to attain back its initial temperature T . Work done by gas during the entire process is
[:A] $\frac{5}{4} n R T$
[:B] $\frac{3}{4} n R T$
[:C] $\frac{1}{4} n R T$
[:D] Zero
[:ANS] B
[:SOLN] $\underset{\mathrm{P} / 4, \mathrm{~V}, \mathrm{~T} / 4}{ }$
$W=\frac{P}{4}(3 V)$
$=\frac{3}{4} n R T \quad[P V=n R T]$
[:Q.29] Assuming the sum to be a spherical body (radius R_{S}) of surface temperature T, the total radiation power received by Earth (radius R_{E}) at a distance r from Sum is
$[: A] \frac{\sigma \pi R_{E}^{2} R_{S}^{2} T^{4}}{r^{2}}$
[:B] $\frac{\sigma 4 \pi R_{E}^{2} R_{S}^{2} T^{4}}{r^{2}}$
[:C] $\frac{\sigma \pi R_{E}^{2} R_{S}^{2} T^{4}}{4 r^{2}}$
[:D] $\frac{\sigma R_{E}^{2} R_{S}^{2} T^{4}}{4 \pi r^{2}}$
[:ANS] A
[:SOLN] Energy emitted by sun $=\sigma T^{4} \times 4 \pi$ Rs 2
Energy falling on Earth $=\frac{\sigma w T^{4} \times 4 \pi \mathrm{Rs}^{2}}{4 \pi \mathrm{r}^{2}} \times \pi \mathrm{R}_{\mathrm{E}}^{2}=\frac{\pi \sigma T 4 \mathrm{R}_{\mathrm{s}}^{2} \mathrm{R}_{\mathrm{E}}^{2}}{\mathrm{r}^{2}}$
[:Q.30] The figure shows five point-charges on a straight line. Separation between successive charges is 10 cm . For what values of q_{1} and q_{2} would the net force on each of the other three charges be zero?

[:A] $\quad q_{1}=q_{2}=\frac{27}{80} \mu C$
[:B] $\quad q_{1}=q_{2}=\frac{27}{40} \mu C$
[:C] $\mathrm{q}_{1}=\frac{27}{80} \mu \mathrm{C} \mathrm{q} \mathrm{q}_{2}=-\frac{27}{80} \mu \mathrm{C}$
[:D] $\mathrm{q}_{1}=\mathrm{q}_{2}=-\frac{27}{40} \mu \mathrm{C}$
[:ANS] A
[:SOLN]

For equilibrium $q_{1} \& q_{2}$ must be negative $\&$ for equilibrium of $1 \mu C q_{1}=q_{2}$ (in magnitude)
For equilibrium of $2 \mu \mathrm{C}$ (either) charge :
$\frac{K(4)}{16 r^{2}}+\frac{K(2)}{4 r^{2}}=\frac{K_{2} q_{1}}{r^{2}}+\frac{K\left(2 q_{2}\right)}{9 r^{2}}$
$\frac{1}{4}+\frac{1}{2}=2 q_{1}+\frac{2}{9} q_{1}\left[\because q_{2}=q_{1}\right]$
$\frac{3}{4}=\frac{20 q_{1}}{9}$
$\mathrm{q}_{1}=\frac{27}{80} \mu \mathrm{C}$
$\therefore \mathrm{q}_{1}=\mathrm{q}_{2}=\frac{-27}{80} \mu \mathrm{C}$
[:Q.31] Two equal blocks, each of mass M, hang on either side of frictionless light pulley with a light string. A rider of mass m is placed on one of the blocks (as shown). When the system is released, the block with rider descends a distance H till the rider is caught by a ring that allows the block to pass through. The system moves a further distance D taking time t. In such a situation, the acceleration due to gravity is
$[: A] g=\frac{(2 M+m) D^{2}}{2 m H t^{2}}$
$[: B] g=\frac{(M+m) D^{2}}{2 \mathrm{mHt}^{2}}$
$[: C] g=\frac{(2 M+m) D}{m H^{2}}$
$[: D] g=\frac{(M+2 m) D^{2}}{m H^{2}}$

[:ANS] A
[:SOLN $] \quad a=\frac{m}{2 M+m} g$

$$
\begin{aligned}
& v=\sqrt{\frac{2 m g H}{(2 M+m)}} \\
& \text { Now } t=\frac{D}{v} \\
& t=\sqrt[D]{\frac{2 M+m}{2 m g H}} \\
& g=\frac{(2 M+m) D^{2}}{2 m H^{2}}
\end{aligned}
$$

[:Q.32] A very small electric dipole of dipole moment \vec{P} lies along the x axis (i.e $\vec{p}=p \hat{i})$ in a nonuniform electric field $\vec{E}=\frac{c}{x} \hat{i}$ (where c is a constant). The force on the dipole is
[:A] $\frac{c p}{x^{2}} \hat{i}$
[:B] $-\frac{c \vec{p}}{x^{2}} \hat{i}$
[:C] $\frac{c p}{x} \hat{i}$
[:D] zero
[:ANS] B
[:SOLN]

$$
\begin{aligned}
& \vec{F}=+P x \frac{\partial E_{x}}{\partial x} \hat{i} \quad \vec{P}=q d x \hat{i} \\
&= P\left(-\frac{C}{x^{2}}\right)^{i} \quad d \frac{x}{C} \longleftrightarrow q x \\
& \longleftrightarrow-\frac{P C}{x^{2}} \hat{i}=\frac{(x \mid q x)}{C} \\
& \longleftrightarrow
\end{aligned}
$$

[:Q.33] A conducting thick spherical shell of radii a and $b(b>a)$ has been charged with uniform surface charge density $-\sigma \mathrm{C} / \mathrm{m}^{2}$ on the inner and $+\sigma \mathrm{C} / \mathrm{m}^{2}$ on the outer surfaces. Then
[:A] the net charge on the spherical shell is zero
$[: B]$ the radial electric field outside the shell is $E=\frac{\sigma b^{2}}{\varepsilon_{0} r^{2}}$
[:C] a radial electric field $E=\frac{\sigma\left(b^{2}-a^{2}\right)}{\varepsilon_{0} r^{2}}$ exists outside the shell
$[: D]$ there is a net electric charge in the cavity (i.e. in region $r<a$) equal to $4 \pi \sigma\left(b^{2}-a^{2}\right)$
[:ANS] B
[:SOLN] Electric field outside the shell will appear only due to charge on its outer surface.

$\therefore \mathrm{E}=\frac{1}{4 \pi \mathrm{t}_{0}} \frac{\sigma \times 4 \pi \mathrm{~b}^{2}}{\mathrm{r}^{2}}$
$=\frac{\sigma b^{2}}{\mathrm{t}_{0} \mathrm{r}^{2}}$
[:Q.34] A spherical conductor is charged up to a potential of 450 V . The potential outside, at a distance 15 cm from the surface, is 300 V . Then
[:A] the potential at 15 cm from the center is 900 V
[:B] the charge on the conductor is 1.5 nC
[:C] the electric field just outside the surface is 150 N/C
[:D] the total electrical energy of the conductor is $\mathrm{U}=3.375 \mu \mathrm{~J}$
[:ANS] D
[:SOLN] Let q be the charge and $\mathrm{r}(\mathrm{in} \mathrm{cm})$ be the radius on the spherical conductor.
$\frac{\mathrm{Kg}}{\mathrm{r}} \times 100=450$
$\Rightarrow \mathrm{Kg}=4.5 \mathrm{r} . \quad$ (i)
$\& \frac{\mathrm{Kg}}{(\mathrm{r}+15)} \times 100=300$
$\Rightarrow \mathrm{Kg}=3 \mathrm{r}+45$
From (i) \& (ii) $r=30 \mathrm{~cm} \& q=15 \mathrm{n} 6$
$\mathrm{U}=\frac{\mathrm{Kg}^{2}}{2 \mathrm{r}}=\frac{9 \times 10^{9} \times 225 \times 10^{-18}}{2 \times 30 \times 10^{-2}}$
$=3.375 \mu \mathrm{j}$
[:Q.35] Capacitors $C_{1}=3 \mu \mathrm{~F}, \mathrm{C}_{2}=6 \mu \mathrm{~F}, \mathrm{C}_{3}=4 \mu \mathrm{~F}$ and $\mathrm{C}_{4}=1 \mu \mathrm{~F}$ are connected in a circuit as shown to a battery of 60 V . Now if key K is closed, the charge that will flow through K is

[:A] $90 \mu \mathrm{C}$ from b to a
[:B] $60 \mu \mathrm{C}$ from b to a
[:C] $30 \mu \mathrm{C}$ from a to b
[:D] $150 \mu \mathrm{C}$ from b to a
[:ANS] A

Mentors Eduserv: ParusLok Complex, Boring Road Crossing, Patna-1 Helpline No. : 9569668800 | 7544015993/4/6/7
[:SOLN] When Switch k is open

Whin switch k is closed

In parallel $v=\frac{A}{C} \cos t \Rightarrow Q \alpha C$
$Q_{1}=\frac{3}{4 \times 3} \times 210=90 \mu \mathrm{c}$
$Q_{2}=\frac{4}{4 \times 3} \times 210=120 \mu \mathrm{c}$
$Q_{3}=\frac{1}{6 \times 1} \times 210=180 \mu \mathrm{c}$
$Q_{4}=\frac{1}{6 \times 1} \times 210=30 \mu \mathrm{c}$
Hence when switch k is closed

Net charge flow from b to a
$=-Q_{f}-Q_{i}$
$=(180-90)-0$
$=90 \mu \mathrm{C}$
[:Q.36] The electrical conductivity of a sample of semiconductor is found to increase when the electromagnetic radiation of wave length just shorter than 2480 nm is incident normally on its surface. The band gap of the semiconductor is
[:A] 1.96 eV
[:B] 1.12 eV
[:C] 0.50 eV
[:D] 0.29 eV
[:ANS] C
[:SOLN] Bond gap= Energy gap
$=\frac{\mathrm{hc}}{\lambda}=\frac{1240 \mathrm{ev}-\mathrm{nm}}{2480 \mathrm{~nm}}$
0.50 ev
[:Q.37] A U-shaped conducting wire of mass $m=10 \mathrm{~g}$, having length of its horizontal section as $\ell=20 \mathrm{~cm}$, is free to move vertically up and down. The two ends of the wire are immersed in
mercury for proper electrical contact. The wire is a homogeneous field, of magnetic induction $B=0.1 \mathrm{~T}$ as shown. The wire jumps up to a height $h=3 \mathrm{~m}$ when a charge q , in the form of a current pulse, is sent through the wire. Considering that the duration of the current pulse is very small compared to the time of flight, the charge q passed through the wire is estimated to be nearly

[:A] $6.85 \mu \mathrm{C}$
[:B] $9.80 \mu \mathrm{C}$
[:C] 2.84 C
[:D] 3.84 C
[:ANS] D
[:SOLN] Magnetic Impulse m wire due to flow of charge
$J=\Delta p=m(v-0)=\int f d t=\int\left\{B\left(i=\frac{d q}{d t}\right) L\right\} d t$
$=\int B \cdot d Q \cdot L=B L Q$
Velocity gained by rod $v=\frac{B L Q}{m}=\sqrt{2 g H}$
\downarrow
Max ${ }^{m}$ height
Charge flow through wire
$Q=\frac{m}{B L} \sqrt{2 g H}$
$=\frac{10 \times 10^{-3}}{0.1 \times 0.2} \sqrt{2 \times 10 \times 3}$
$=\sqrt{15} \mathrm{C}=3.84 \mathrm{C}$
[:Q.38] A target of ${ }^{7} \mathrm{Li}$ is bombarded with a proton beam of current 10^{-4} ampere for 1 hour to produce ${ }^{7}$ Be of activity 1.8×10^{8} disintegrations per second. Assuming that bombarding of 1000
protons produces on ${ }^{7} \mathrm{Be}$ radioactive nucleus, the half-life of ${ }^{7} \mathrm{Be}$ is estimated to be approximately
[:A] 6887 hour
[:B] 4332 hour
[:C] 2407 hour
[:D] 2195 hour
[:ANS] C
[:SOLN] given $\mathrm{i}=\frac{\mathrm{Q}}{\mathrm{t}} \Rightarrow \mathrm{Q}=\mathrm{it}=\mathrm{ne}$
No of $\mathrm{Be}-$ nucleus $=\frac{\text { Totalna of proton }}{1000}$

$$
\begin{aligned}
& =\frac{n=\frac{Q}{e}=\frac{i \times t}{e}}{1000} \\
& =\frac{16^{4} \times 3600}{1.6 \times 10^{-19} \times 1000}
\end{aligned}
$$

AB Activity $A=\lambda N_{0} \Rightarrow \lambda \frac{\mathrm{~A}}{\mathrm{~N}_{0}}$
Half life
$=0.693 \times \frac{\left(\frac{10^{-4} \times 3600}{1.6 \times 10^{-9} \times 1000}\right)}{1.8 \times 10^{8}}$
$=2407 \mathrm{hr}$
[:Q.39] A long straight wire carrying a current $\mathrm{I}=10 \mathrm{~A}$ and a rectangular metallic loop of dimensions b $\times \mathrm{c}$ lie in the same plane as shown in the figure. The parameters are $a=10 \mathrm{~cm}, \mathrm{~b}=30 \mathrm{~cm}$ and $c=50 \mathrm{~cm}$. The mutual inductance of the system is nearly

[:A] 69 nH
[:B] 71 nH
[:C] 139 nH
[:D] 281 nH
[:ANS] C
[:SOLN]

Magnetic flux through
Rectangular loop due to current in wire
$|\phi|=\int(\mathrm{dd})_{\text {element }}$
$=\int B d s \operatorname{Co} \pi \theta=\int \frac{\mu_{0} i}{2 \pi x}(c . d x)$
$=\frac{\mu_{0}}{2 \pi}$ ic $\int_{x=a}^{x=a+b} \frac{d x}{x}=\frac{\mu_{0} \text { ic }}{2 \pi} \ln \frac{a+b}{a}$
Mutual inductance
$M=\frac{\phi_{s}}{i_{p}}=\frac{\mu_{0} c}{2 \pi} \ell n \frac{a+b}{a}$
$=2 \times 10^{-7} \times 50 \times 10^{-2} \ln \frac{10+30}{10}$
$=10^{-7} \ln 4$
$=2 \times 10^{-7} \times 0.693$
$=139 \mathrm{nH}$
[:Q.40] Impedance of a given series LCR circuit, fed with alternating current, is the same for two frequencies f_{1} and f_{2}. The resonance frequency f_{R} of the circuit is
[:A] $\frac{f_{1}+f_{2}}{2}$
[:B] $\frac{2 \mathrm{f}_{1} \mathrm{f}_{2}}{\mathrm{f}_{1}+\mathrm{f}_{2}}$
$[: C] \sqrt{f_{1} f_{2}}$
$[: D] \sqrt{\mathrm{f}_{1}{ }^{2}+\mathrm{f}_{2}{ }^{2}}$
[:ANS] C
[:SOLN] For same impendence

$$
\begin{aligned}
& Z_{1}=Z_{2} \\
& \sqrt{R^{2}+\left(\omega_{1} L-\frac{1}{\omega_{1} C}\right)^{2}}=\sqrt{R^{2}+\left(\omega_{2} L-\frac{1}{\omega_{2} C}\right)^{2}} \\
& \omega_{1} L-\frac{1}{\omega_{1} C}=\left|\omega_{2} L-\frac{1}{\omega_{2} C}\right|=\frac{1}{\omega_{2} C}-\omega_{2} L \\
& \left(\omega_{1}+\omega_{2}\right) L=\frac{1}{C}\left(\frac{1}{\omega_{1}}+\frac{1}{\omega_{2}}\right) \\
& \left(\omega_{1}+\omega_{2}\right) L=\frac{\omega_{1}+\omega_{2}}{\omega_{1} \cdot \omega_{2}} \cdot \frac{L}{C} \\
& \omega_{1} \cdot \omega_{2}=\frac{1}{L C}=w^{2} \\
& \text { Re sonance frequency }
\end{aligned}
$$

$$
2 \pi f_{1} \cdot 2 \pi f_{2}=(2 \pi f)^{2}
$$

$$
\mathrm{f}=\sqrt{\mathrm{f}_{1} \cdot \mathrm{f}_{2}}
$$

[:Q.41] A lawn roller is a solid cylinder of mass M and radius R. As shown in the figure, it is pulled at its center by a horizontal force F and rolls without slipping on a horizontal surface. Then the

[:A] acceleration of the cylinder is $\frac{2 F}{M}$
$[: B]$ force of friction acting on the cylinder is $\frac{2 F}{3 M}$
$[: C]$ coefficient of friction needed to prevent slipping is at least $\frac{F}{3 M g}$
[:D] minimum coefficient of friction to prevent slipping is $\frac{2 \mathrm{~F}}{3 \mathrm{Mg}}$
[:ANS] C
[:SOLN] For a solid cylinder

mg
$\Rightarrow \mathrm{N}=\mathrm{mg} \rightarrow(1$
\Rightarrow for translation, fret $=\mathrm{Ma} \mathrm{cm}$
$F-\mathrm{f}=\mathrm{Ma} \rightarrow 2$
\Rightarrow for Rotation $\tau \mathrm{cm}=1 \alpha$
f. $R=I \alpha$
for pure Rolling $a=R \alpha$
$f \cdot R=l \alpha=I \frac{a}{R}$
$f=\frac{l a}{R^{2}} \rightarrow(3$
\Rightarrow from (2) 3 , $\mathrm{f}=\left[\mathrm{M}+\frac{\mathrm{I}}{\mathrm{R}^{2}}\right] a$
Ace $^{n} a=\frac{f}{M+\tau / R^{2}}=\frac{f}{M+\frac{\left(M R^{2}\right)}{R^{2}}}=\frac{2 f}{3 M}$
\Rightarrow frication force $=\frac{\left(\frac{M R^{2}}{2}\right)}{R^{2}} \times \frac{2 f}{3 M}$
$=\mathrm{f} / 3=\mathrm{f}$ repaired
\Rightarrow for pure Rolling
$\mathrm{f}_{\text {required }} \leq \mathrm{fme} \alpha$
$\mathrm{f} / 3 \leq \mu(\mathrm{N}=\mathrm{mg})$
$\mu \geq \frac{\mathrm{f}}{3 \mathrm{mg}}=\mu_{\text {min }}$
[:Q.42] A hydrogen atom $\left(M_{n}=1.67 \times 10^{-n} \mathrm{~kg}\right)$, initially at rest, emits a photon and goes from the excited state $\mathrm{n}=5$ to the ground state. The recoil speed of the atom is nearly
[:A] $4.2 \mathrm{~ms}^{-1}$
[:B] $4 \times 10^{-4} \mathrm{~ms}^{-1}$
[:C] $2 \times 10^{-2} \mathrm{~ms}^{-1}$
[:D] $8 \times 10^{2} \mathrm{~ms}^{-1}$
[:ANS] A
[:SOL]

H -atom

From energy conservation :
Energy Released in dexcitation $=\mathrm{E}_{\text {photon }}+\mathrm{E}_{\mathrm{H} \text {-atorn }}$

$$
\begin{align*}
& 13.6\left(\frac{1}{1}-\frac{1}{\mathrm{~s}^{2}}\right) \mathrm{eV}=\frac{\mathrm{hc}}{\lambda}+\frac{1}{2} \mathrm{MV}^{2} \\
\Rightarrow & \frac{13.6 \times 24}{25} \times 1.6 \times 10^{-14}=\left(\frac{\mathrm{h}}{\lambda}\right) \mathrm{c}+\frac{1}{2} \mathrm{MV}^{2} \tag{i}
\end{align*}
$$

From momentum conservation

$$
\begin{align*}
& P_{i}=P_{f} \\
\Rightarrow \quad & O=\frac{h}{\lambda}-M V \\
\Rightarrow \quad & \frac{\mathrm{~h}}{\lambda}=M V \tag{ii}
\end{align*}
$$

In $\mathrm{eg}^{\mathrm{n}}(\mathrm{i}): \quad 13.6 \times 24 \times 1.6 \times 10^{-19}=\mathrm{MVC}+\frac{1}{2} \mathrm{MV}^{2}$
$\Rightarrow \quad 2.1 \times 10^{-18}=M V\left(c+\frac{v}{2}\right) ; c+\frac{v}{2}=c$
$\Rightarrow \quad 2.1 \times 10^{-18}=\left(1.67 \times 10^{-27}\right)(\mathrm{v})\left(3 \times 10^{8}\right)$
$\Rightarrow \mathrm{V}=4.2 \mathrm{~m} / \mathrm{s}$
[:Q.43] Two nuclides A and B are isotopes. The nuclides B and C are isobars. All the three nuclides
A, B and C are radioactive. You may then conclude that
$[: A]$ the nuclides A, B and C must belong to the same element
$[: B]$ the nuclides A, B and C may belong to the same element
$[: C]$ it is possible that A may change to B through a radioactive decay process
$[: D]$ it is possible that B may change to C through a radioactive decay process
[:ANS] D
[:SOLN]
[:Q.44] Numerical aperture of an optical fibre is a measure of
[:A] the attenuation of light through it
[:B] its resolving power
$[: C]$ the pulse dispersion through it
[:D] its light gathering power
[:ANS] D

[:SOLN]

[:Q.45] A direct vision spectroscope has been designed to obtain dispersion without deviation by arranging alternate inverted thin prisms of crown glass (refractive index $\mu_{1}=\sqrt{2}$) and flint glass $\left(\mu_{2}=\sqrt{3}\right)$ with refracting angle $\theta_{f t i n t}=3^{*}$. The refracting angle $\theta_{\text {crown }}$ of the crown glass prism is
[:A] 3.0*
[:B] 4.5*
[:C] 5.3*
[:D] 6.0*
[:ANS] C
[:SOLN $] \quad \delta_{\text {net }} \Rightarrow \delta_{1}-\delta_{2}=0$
$(\sqrt{2}-1) \theta_{c}-\left((\sqrt{3}-1) 3^{0}=0\right.$
$\theta_{c}=5.3^{0}$.
[:Q.46] Continuous and Characteristic X - rays are produced when electron beam accelerated by a high potential difference of V volt (say) is made to hit the metallic target such as Molybdenum in a modern Coolidge tube. Let $\lambda_{\min }$ be the smallest possible wavelength of continuous X rays and $\lambda_{\text {La }}$ be the maximum wavelength of the characteristic X - rays. Then
[:A] $\lambda_{\text {La }}$ increases with increase in V
[:B] λ_{La} decreases with increase in V
[:C] $\lambda_{\text {min }}$ increases with increase in V
[:D] $\lambda_{\text {min }}$ decreases with increase in V
[:ANS] D
[:SOLN] $\lambda_{\text {min }}=\frac{\mathrm{hc}}{\mathrm{eV}}$
If V increases, $\lambda_{\text {min }}$ decreases and $\lambda_{\mathrm{k} \alpha}$ is independent of V .
[:Q.47] While performing an experiment for determining the focal length of a concave mirror by $u-v$ method, a student recorded the given sets of the positions (in cm) of the object and the corresponding image on the bench as $(12,51),(18,54),(30,50),(48,34),(42,42)$ and $(78$, 98). She used an optical bench of length 1.5 m and the mirror is fixed at the 90 cm mark on the bench. The maximum acceptable error in the location of the image is 0.2 cm . The reading (observing) that cannot be obtained from experimental measurement and has been incorrectly recorded, for a mirror of focal length $=24 \mathrm{~cm}$, is
[:A] $(18,54)$
[:B] $(30,50)$
[:C] $(48,34)$
[:D] $(78,98)$
[:ANS] D
[:SOLN] Position of mirror $=\mathrm{Xm}=90$
focal length of mirror $=24 \mathrm{cn}$
$f=-24 \mathrm{~cm}$
Form mirror formular : $\frac{1}{v}+\frac{1}{u}=\frac{1}{f}$

$$
\Rightarrow f=\frac{u v}{u+v}
$$

Data -1 : $(12,51)$
$\mathrm{u}=\mathrm{x}_{0}-\mathrm{x}_{\mathrm{m}}=12-90=-78 \mathrm{~cm}$
$v=x_{1}-x_{m}=51-90=-39 \mathrm{~cm}$
$f=\frac{(-39)(-78)}{(-78)+(-39)}=\frac{39 \times 78}{-39 \times 3}=\frac{-73}{3}$
$=-26 \mathrm{~cm}$
Data - $2(18,54)$
$u=18-90=-72 \mathrm{~cm}$
$\mathrm{v}=54-90=-36 \mathrm{~cm}$
$f=\frac{(-36)(-72)}{-72+36}=\frac{36 \times 72}{-36 \times 3}=\frac{+72}{3} \mathrm{~cm}$
$=-24 \mathrm{~cm}$
Data - 3: $(30,50)$
$\mathrm{u}=30-90=-60$
$v=50-90=-40$
$f=\frac{(-40)(-60)}{-40-60}=-24 \mathrm{~cm}$
Data - 4: $(48,34)$
$\mathrm{u}=48-90=-42$
$v=34-90=-52$
$f=\frac{(-42)(-56)}{-98}$
$=-24 \mathrm{~cm}$
Data - 5: $(42,42)$
$u=42-90=-48$
$v=42-90=-48$
$f=\frac{(-48)(-48)}{-96}=-24 \mathrm{~cm}$
Data - 6: $(78,98)$

$$
\begin{aligned}
& \mathrm{u}=78-90=-12 \\
& \mathrm{v}=98-90=8
\end{aligned}
$$

$$
f=\frac{(-12)(+8)}{-12+8}=+24 \mathrm{~cm}
$$

\rightarrow As we can see, we get $f=+24 \mathrm{~cm}$ which is not possible for concave mirror so Answer (78, 98)
[:Q.48] A parallel beam, of 6.0 mW radiation of wavelength 200 nm and of area of cross-section 1.0 mm^{2}, falls normally on a plane metallic surface. If the radiations are completely reflected, the pressure exerted by the radiations on the metallic surface is estimated to be
[:A] $1 \times 10^{5} \mathrm{~Pa}$
[:B] $2 \times 10^{5} \mathrm{~Pa}$
[:C] $2 \times 10^{-5} \mathrm{~Pa}$
[:D] $4 \times 10^{-5} \mathrm{~Pa}$
[:ANS] D
[:SOLN] $P_{\text {rad }}=\frac{21}{C}$
$=\frac{2 \mathrm{P}}{\mathrm{AC}}$
$=\frac{2 \times 6 \times 10^{-3}}{1 \times 10^{-6} \times 3 \times 10^{8}}$
$=4 \times 10^{-5} \mathrm{~Pa}$
(NSEP) PART : A-2
ANY NUMBER OF OPTIONS 4, 3, 2 OR 1 MAY BE CORRECT MARKS WILL BE AWARDED ONLY IF ALL THE CORRECT OPTIONS ARE BUBBLED.
[:Q.49] A small dipole of placed at the origin with its dipole moment $\vec{P}=p \hat{i}$ oriented along x axis. E and V, are respectively, the Electric filed and potential at point $A(x, y)$. The observations at the Point $A(x, y)$ which is at a large distance r from the origin, show that
[:A] $E_{x}=\frac{1}{4 \pi \varepsilon_{0}} \frac{p\left(2 x^{2}-y^{2}\right)}{r^{3}}[: B]$
$E_{x}=\frac{1}{4 \pi \varepsilon_{0}} \frac{p\left(x^{2}-y^{2}\right)}{r^{5}}$
$[: C] \quad E_{y}=\frac{1}{4 \pi \varepsilon_{0}} \frac{3 p x y}{r^{5}}$
[:D] $\quad \mathrm{E}_{\mathrm{y}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\overrightarrow{\mathrm{p}} \cdot \overrightarrow{\mathrm{y}}}{\mathrm{r}^{3}}$
[:ANS] A, C, D
[:SOLN]

Here, $\mathrm{E}_{\mathrm{r}}=\frac{2 \mathrm{Kp} \cos \theta}{\mathrm{r}^{3}}$ and $\mathrm{E}_{\mathrm{t}}=\frac{\mathrm{Kp} \sin \theta}{\mathrm{r}^{3}}$
X-comp of EFI -
$\mathrm{E}_{\mathrm{x}}=\mathrm{E}_{\mathrm{r}} \cos \theta-\mathrm{E}_{\mathrm{t}} \sin \theta$
$=\frac{2 K p \cos ^{2} \theta}{r^{3}}-\frac{K p \sin ^{2} \theta}{r^{3}}$
$=\frac{\mathrm{Kp}}{\mathrm{r}^{3}}\left(2 \cos ^{2} \theta-\sin ^{2} \theta\right)$
$=\frac{K p}{r^{3}}\left(2 \frac{x^{2}}{r^{2}}-\frac{y^{2}}{r^{2}}\right)$
$=\frac{K p}{r^{3}}\left(2 x^{2}-y^{2}\right)$
$\mathrm{E}_{\mathrm{y}}=\mathrm{E}_{\mathrm{r}} \sin \theta+\mathrm{E}_{\mathrm{t}} \cos \theta$
$=\frac{2 K p \cos \theta \sin \theta}{r^{3}}+\frac{K p \sin \theta \cos \theta}{r^{3}}$
$=\frac{3 K p}{r^{3}} \sin \theta \cos \theta$
$=\frac{3 K p}{r^{3}} \times \frac{x}{r} \times \frac{y}{r}$
$=\frac{3 K p x y}{r^{5}}$
$\mathrm{V}=\frac{\mathrm{Kp} \cos \theta}{\mathrm{r}^{2}} \Rightarrow \mathrm{~V}=\frac{\mathrm{Kpr} \cos \theta}{\mathrm{r}^{3}}$
In vector form -
$V=\frac{K \vec{p} \cdot \vec{r}}{r^{3}}$
[:Q.50] Two equal positive charges $+Q$ each lie on y axis at $(0, a)$ and ($0,-a$). The electric filed strength E at a point $(x, 0)$ satisfies:
[:A] $\quad E_{y}=\frac{1}{4 \pi \varepsilon_{0}} \frac{2 Q a}{\left(\mathrm{x}^{2}+\mathrm{a}^{2}\right)^{1 / 2}}$
$[: B]$ for large values of x (i.e. $x \gg a$), the electric filed $E \propto \frac{1}{x^{2}}$
$[: C]$ for $x \geq 0, E$ is maximum at $x=\frac{a}{\sqrt{2}}$
$[: D]$ for $x \geq 0, E$ is maximum at $x=0$ and is equal to $\frac{1}{4 \pi \varepsilon_{0}} \frac{2 Q}{a^{2}}$
[:ANS] B, C
[:SOLN]

$E=\frac{k Q}{a^{2}+x^{2}}$
$\mathrm{E}_{\text {net }}=2 \mathrm{E} \cos \theta$
$E_{\text {net }}=\frac{2 k Q}{a^{2}+x^{2}} \times \frac{x}{\sqrt{a^{2}+I^{2}}}=\frac{2 k Q x}{\left(a^{2}+x^{2}\right)^{3 / 2}}$
When $x \gg a, a^{2}+x^{2} \approx x^{2}$
$\therefore \mathrm{E}=\frac{2 \mathrm{kQx}}{\mathrm{x}^{3}}=\frac{2 \mathrm{kQ}}{\mathrm{x}^{2}}$
For E to be maximum
$\frac{d E}{d x}=0$

$$
\begin{aligned}
& \frac{\left(a^{2}+x^{2}\right)^{3 / 2} \times 1-x \times \frac{3}{2}\left(x^{2}+a^{2}\right)^{1 / 2} \times 2 x}{\left(a^{2}+x^{2}\right)^{3 / 2}}=0 \\
& \sqrt{a^{2}+x^{2}}\left(a^{2}+x^{2}-3 x^{2}\right)=0 \\
& 2 x^{2}=a^{2} \\
& x=\frac{a}{\sqrt{2}}
\end{aligned}
$$

[:Q.51] A metal rod of mass m and length ℓ slides of frictionless parallel metal rails of negligible resistance, A resistance R is connected between the rails at their ends as shown in the figure. A uniform magnetic field B is directed into the plane of paper perpendicular to the plane of rails throughout the space. The rod is given an initial velocity v_{0} (towards right). No other force acts on the rod. Then

$[: A] \quad v(t)=v_{0} e^{\frac{-B \ell_{1}}{m R}}$
[:B] the rod stops after travelling a distance $x=\frac{m v_{0} R}{B^{2} \ell^{2}}$
[:C] The total energy dissipated in resistance is $\frac{1}{4} m v_{0}^{2}$ i.e. half of the initial kinetic energy
$[: D]$ The total charge that flows in the circuit is $q=\frac{m v_{0}}{B \ell}$
[:ANS] B, D
[:SOLN]

$$
i=\frac{B V L}{R}
$$

Magnetic force on the rod -

$$
\begin{aligned}
& \mathrm{F}=\mathrm{i} \ell \mathrm{~B}(\text { Left }) \\
& \mathrm{F}=\frac{\mathrm{B}^{2} \ell^{2} \mathrm{~V}}{\mathrm{R}}
\end{aligned}
$$

Acceleration produced in the rod -

$$
\begin{aligned}
& a=-\frac{F}{m} \\
& \frac{d v}{d t}=-\frac{B^{2} \ell^{2} v}{m R} \\
& \int_{v_{0}}^{v} \frac{d v}{d t}=-\frac{B^{2} \ell^{2}}{m R} \int_{0}^{t} d t
\end{aligned}
$$

$\ln \frac{V}{V_{0}}=-\frac{B^{2} \ell^{2}}{m R} t$

$$
\begin{aligned}
& V=V_{0} e^{-} \frac{B^{2} \ell^{2}}{m R} t \\
\Rightarrow \quad & \mathrm{a}=\frac{-\mathrm{B}^{2} \ell^{2}}{m R} \mathrm{~V} \\
& \frac{\mathrm{VdV}}{\mathrm{dx}}=-\frac{\mathrm{B}^{2} \ell^{2}}{m R} \mathrm{~V}
\end{aligned}
$$

$$
\int_{V_{0}}^{0} \mathrm{dV}=-\frac{\mathrm{B}^{2} \ell^{2}}{\mathrm{mR}} \int_{0}^{\mathrm{x}} \mathrm{dx}
$$

$$
D-V_{0}=-\frac{B^{2} \ell^{2}}{m R} x
$$

$$
\mathrm{x}=\frac{\mathrm{mR}}{\mathrm{~B}^{2} \ell^{2}} \mathrm{~V}_{0}
$$

$$
\Rightarrow \quad \mathrm{Q}=\frac{\Delta \phi}{\mathrm{R}}
$$

$$
=\frac{\mathrm{BR} \times \frac{\mathrm{mR}}{\mathrm{~B}^{2} \ell^{2}} \mathrm{~V}_{0}}{\mathrm{R}}
$$

$$
\begin{aligned}
& =\frac{m V_{0}}{B \ell} \\
& H=\int_{0}^{\infty} i^{2} R d t \\
& H=\int_{0}^{\infty} \frac{B^{2} V^{2} \ell^{2}}{R^{2}} R d t \\
& H=\frac{B^{2} \ell^{2}}{R} \int_{0}^{\infty} V_{0}^{2} e^{-2} \frac{B^{2} \ell^{2}}{m R} t d t \\
& =-\frac{1}{2} m v_{0}^{2}[0-1] \\
& =\frac{1}{2} m v_{0}^{2}
\end{aligned}
$$

[:Q.52] The magnetic field $\vec{B}=2 \times 10^{-4} \sin \left\{\pi\left(0.5 \times 10^{3} x+1.5 \times 10^{11} t\right)\right\} \hat{j} T$ represents a plane electromagnetic were travelling in space with x is meter and t in second. The correct statement(s) are
[:A] The wave length of the eave is 4.0 mm and its frequency is 75 GHz
[:B] The energy density associated with the wave in nearly $=316 \mu \mathrm{~J} / \mathrm{m}^{3}$
[:C] The electric field vector $\vec{E}=-6000 \sin \left[\pi\left(0.5 \times 10^{3} \mathrm{x}-1.5 \times 10^{11} \mathrm{t}\right)\right] \hat{\mathrm{k}} \mathrm{Vm}^{-1}$
[:D] The electric field vector is $\vec{E}=-6000 \sin \left[\pi\left(0.5 \times 10^{3} x-1.5 \times 10^{11} t\right)\right] \hat{k} \mathrm{Vm}^{-1}$
[:ANS] A, D
[:SOLN] $\vec{B}=2 \times 10^{-5} \sin \left(\pi\left(0.5 \times 10^{3} x+1.5 \times 10^{11} \mathrm{t}\right) \hat{\mathrm{J}} \mathrm{T}\right.$
Comparing with standard equation :
$B=B_{0} \sin (k x+w t)$
We get,
$\mathrm{K}=0.5 \pi \times 10^{3}=\frac{2 \pi}{\lambda}$
$\lambda=\frac{2}{500}=0.4 \times 10^{-2}=4 \mathrm{~mm}$
For angular frequency :
$\mathrm{w}=1.5 \times 10^{11} \times \pi=2 \pi \mathrm{f}$
Then, $\mathrm{f}=\frac{1.5 \times 10^{11}}{2}=0.75 \times 10^{11}=75 \times 10^{9}$
$\mathrm{f}=75 \mathrm{GHz}$
Every density $=\frac{\mathrm{B}_{0}^{2}}{2 \mu_{0}}=\frac{\left(2 \times 10^{-5}\right)^{2}}{2 \times 4 \pi \times 10^{-7}}=\frac{10^{-3}}{2 \pi}=0.159 \mathrm{~mJ}$
(c) $\mathrm{E}_{0}=\mathrm{B}_{0} \mathrm{C}=2 \times 10^{-5} \times 3 \times 10^{8}=6 \times 10^{3}$
$\overrightarrow{\mathrm{E}} \times \overrightarrow{\mathrm{B}}=\overrightarrow{\mathrm{C}}$
$\overrightarrow{\mathrm{E}} \times \hat{\mathrm{J}}=-\hat{\mathrm{i}}$
Therefore \vec{E} must be along \hat{k}
Then $\vec{E}=6000 \sin \left[\pi\left(0.5 \times 10^{3} x+1.5 \times 10^{11} t\right)\right] \hat{k} v m^{-1}$
[:Q.53] The force $F(x)$ acting on a body of mass m charges with position x (in meter) as shown. It is given that the potential energy $U(x)=0$ and $x=0$

[:A] $U(x)=0$ at $x=0, x=3$ and $x=6$
[:B] $U(x)=2 x^{2}-12 x$ for $3 \leq x \leq 4$
[:C] $U(x)=-x^{2}+12 x-40$ for $4 \leq x \leq 6$
[:D] At $x=3, U(x)=-10 \mathrm{~J}$
[:ANS] C, D
[:SOLN]

$\Delta u=-W_{\text {conservative force }}$

$$
\begin{aligned}
& \mathrm{U}_{\mathrm{x}}-\mathrm{U}_{0}=-\mathrm{W} \\
& \mathrm{U}_{\mathrm{x}}-\mathrm{W} \\
& \Rightarrow \quad \mathrm{~W}_{0 \rightarrow 3}=\frac{1}{2} \times(3+2) \times 4=10 \mathrm{~J} \\
& \mathrm{U}_{\mathrm{x}=3}=-10 \mathrm{~J} \\
& \Rightarrow \text { for } 2 \leq x \leq 4 \rightarrow F=-4 x+12 \\
& W_{2 \rightarrow x}=\int_{2}^{x} F d x \\
& W_{2 \rightarrow x}=\left[-2 x^{2}+12 x\right]_{2}^{x} \\
& W_{2 \rightarrow x}=-2 x^{2}+12 x+8-12 \times 2 \\
& =-2 x^{2}+12 x-16 \\
& \mathrm{~W}_{0 \rightarrow 2}=2 \times 4=8 \\
& \mathrm{U}_{\mathrm{x}}=-\left(\mathrm{W}_{0 \rightarrow 2}+\mathrm{W}_{\mathrm{z} \rightarrow \mathrm{x}}\right) \\
& =\sim\left(-2 x^{2}+12 x-8\right) \\
& =2 x^{2}-12 x+8 \\
& 4 \leq x \leq 6 \rightarrow F=2 x-12 \\
& W_{4 \rightarrow x}=\int_{4}^{x}(2 x-12) d x \\
& =\left[x^{2}-12 x\right]_{4}^{x} \\
& =x^{2}-12 x-16+48 \\
& =x^{2}-12 x+32 \\
& \mathrm{U}_{\mathrm{x}}=-\left(\mathrm{W}_{0 \rightarrow 4}+\mathrm{W}_{4 \rightarrow \mathrm{x}}\right) \\
& =-\left(8+x^{2}-12 x+32\right) \\
& =-x^{2}+12 x-40
\end{aligned}
$$

[:Q.54] The deuteron of mass M moving at speed v collides elastically with an α-particle of mass $2 M$, initially at rest. The deuteron is scattered through 90° from initial direction of its motion with speed V_{α} while the α-particle is scattered with speed V_{α} at angle θ from the initial direction of motion of deuteron. Then
[:A] $\theta=30^{\circ}$
[:B] $\mathrm{V}_{\alpha}=\frac{\mathrm{V}}{\sqrt{3}}$
$[: C] \quad V_{d}=\frac{v}{\sqrt{3}}$
[:D] a fraction $\frac{2}{3}$ of energy of deuteron is transferred of α-particle
[:ANS] A, B, C, D
[:SOLN]

For elastic collision -
$\mathrm{e}=1$
$V_{2 n}^{\prime}-V_{1 n}^{\prime}=V_{1 n}^{\prime}-V_{2 n}^{0}$
$\mathrm{V}_{\alpha}-\left(-\mathrm{V}_{\mathrm{d}} \sin \theta\right)=\mathrm{V} \cos \theta$
$\mathrm{V}_{\alpha}=\mathrm{V} \cos \theta-\mathrm{V}_{\mathrm{d}} \sin \theta$
For deuteron -
$\because \quad V_{t}=V_{t}^{\prime}$
$\mathrm{V} \sin \theta=\mathrm{V}_{\mathrm{d}} \cos \theta$
$\mathrm{V}_{\mathrm{d}}=\mathrm{V} \tan \theta$
From (i) and (ii) :
$\mathrm{V}_{\alpha}=\mathrm{V} \cos \theta-\mathrm{V} \tan \theta \sin \theta$

$$
\begin{equation*}
=\frac{\mathrm{V} \cos 2 \theta}{\cos \theta} \tag{iii}
\end{equation*}
$$

From principle of conservation of linear momentum along y axis.

$$
\begin{aligned}
& P_{y}=P_{y}^{\prime} \\
& O=M V_{d}-2 M V_{\alpha} \sin \theta
\end{aligned}
$$

$$
V_{d}=2 V_{\alpha} \sin \theta
$$

Using (ii) and (iii) :

$$
\begin{aligned}
& \mathrm{V} \tan \theta=\frac{2 \mathrm{~V} \cos 2 \theta}{\cos \theta} \sin \theta \\
& \cos 2 \theta=\frac{1}{2} \rightarrow 2 \theta=60^{\circ} \rightarrow \theta=30^{\circ} \\
& \therefore \quad \mathrm{V}_{\mathrm{d}}=\mathrm{V} \tan 30^{\circ}=\frac{\mathrm{V}}{\sqrt{3}} \\
& \mathrm{~V}_{\alpha}=\frac{\mathrm{V} \cos 60^{\circ}}{\cos 30^{\circ}}=\frac{\mathrm{V} \times \gamma_{2}}{\sqrt{3} / 2}=\frac{\mathrm{V}}{\sqrt{3}} \\
& \mathrm{~K}_{\alpha}=\frac{1}{2} \times 2 \mathrm{M} \times \frac{\mathrm{V}^{2}}{3} \\
& =\frac{2}{3} \times \frac{1}{2} \mathrm{MV} \mathrm{~V}^{2} \\
& \mathrm{~K}_{\alpha}=\frac{2}{3} \mathrm{~K}_{\mathrm{d}}
\end{aligned}
$$

[:Q.55] Two plane progressive waves travelling on a string as

$$
\begin{aligned}
& y_{1}=2.5 \times 10^{-3} \sin (30 x-420 t) \\
& y_{2}=2.5 \times 10^{-3} \sin (30 x+420 t)
\end{aligned}
$$

Superimpose to produce a standing wave. The variables x and y are in meter and t is in second. Then
[:A] The equation of resultant standing wave is $y=5 \times 10^{-3} \cos (30 x) \sin (420 t)$
[:B] the equation of resultant standing wave is $y=2.5 \times 10^{-3} \sin (30 x) \cos (420 t)$
$[: C]$ the antinode closest to $x=0.25 m$ is at $x=0.262 m$
[:D] the amplitude of oscillation of particle at $x=0.17 \mathrm{~m}$ is 4.63 mm
[:ANS] C, D
[:SOLN] $y=y_{1}+y_{2}$

$$
=2.5 \times 10^{-3}[\sin 30 x \cdot \cos 420 t-\cos 30 x \cdot \sin 420 t+\sin 30 x \cdot \cos 420 t+\cos 30 x \cdot \sin 420 t]
$$

$$
\therefore y=5 \times 10^{-3} \sin 30 x \cdot \cos 420 t
$$

For antinode
$\sin 30 x= \pm 1$
$\Rightarrow 30 x=\frac{\pi}{2}, \frac{3 \pi}{2}, \frac{5 \pi}{2}, \ldots$
$\therefore \mathrm{x}=\frac{\pi}{60}, \frac{\pi}{20}, \frac{\pi}{12}, \ldots$.
$\therefore \frac{\pi}{12} \approx 0.262$
\therefore Option (c) is correct.
At $x=0.17 \mathrm{~m}$
$A=5 \times 10^{-3} \sin (30 \times 0.17 \mathrm{rad})$
$=5 \times 10^{-3} \sin (5.1 \mathrm{rad})=5 \times 10^{-3} \sin \left(\frac{3 \pi}{2}+0.39\right)$
$=5 \times 10^{-3} \cos (0.39)=5 \times 10^{-3}\left(1-\frac{(0.39)^{2}}{2}\right)$
$=5 \times 10^{-3}(1-0.076)=4.63 \times 10^{-3} \mathrm{~m}$
Option (d) is correct.
[:Q.56] Two moles of nitrogen in a container, of negligible thermal capacity, are initially at $17^{\circ} \mathrm{C}$. The gas is compressed adiabatically from an initial volume of 120 liter to 80 liter. The correct option(s) is/are
[:A] Initial pressure of a gas is nearly 40.2 kPa
[:B] Final temperature of the gas is nearly $68^{\circ} \mathrm{C}$
[:C] Work done by the gas is 2.12 kJ
[:D] The internal energy of the gas increased by 2.12 kJ
[:ANS] A, B, D,
[:SOLN] $\because \quad P V=n R T$
$\mathrm{P}\left(120 \times 10^{-3}\right)=2\left(\frac{25}{3}\right)(290)$
$\therefore \mathrm{P}=40.2 \times 10^{3} \mathrm{~Pa}$
$\because \mathrm{PV}^{\mathrm{r}}=$ Constant $\Rightarrow \mathrm{TV}^{\mathrm{r}-1}=$ Constant
$v=1+\frac{2}{f}=1+\frac{2}{5}=\frac{7}{5}$
$\therefore 290(120)^{2 / 5}=\mathrm{T}_{\mathrm{f}}(80)^{2 / 5}$
$\mathrm{T}_{\mathrm{f}}=290\left(\frac{3}{2}\right)^{2 / 5}$

$$
=290(1.17)=341.06 \mathrm{~K}
$$

$$
\therefore \mathrm{T}_{\mathrm{f}}=68.06^{\circ} \mathrm{C}
$$

\because gas is compressed \Rightarrow w.d by gas $=-$ ve
\therefore option (c) is incorrect

$$
\begin{aligned}
\Delta \mathrm{u}=\mathrm{nC}_{\mathrm{v}} \Delta \mathrm{~T} & =2\left(\frac{5}{2} \times \frac{25}{3}\right)(51)=2125 \mathrm{~J} \\
& =2.12 \mathrm{~kJ}
\end{aligned}
$$

[:Q.57] In the circuit shown, the current in the 8Ω resistance across G and H is $\mathrm{I}=0.5$ ampere. The ammeter is ideal. The internal resistance of the cell is 0.8Ω. Choose correct options (s).

[:A] Reading of the ammeter is 1.5 ampere
[:B] Potential difference across A and H is 13 V
[:C] Potential difference across C and F is 9 V
[:D] The emf of the cells is 24 V
[:ANS] A, B, C, D
[:SOLN]

$$
6\left(I_{1}\right)=(12)(0.5)
$$

$l_{1}=1 \mathrm{~A}$
$I_{2}(12)=1.5(2+4+2) \Rightarrow I_{2}=1 \mathrm{~A}$
$\mathrm{I}_{3}=2.5 \mathrm{~A}$
$V_{A}-V_{H}=2(2.5)+2(1.5)+(2+8)(0.5)=13$ volt
$V_{C}-V_{F}=1.5 \times 2+1 \times 6=9$ volt
$\because \varepsilon-(2.5) 2-(1)(12)-(2.5)(2 \times 0.8)=0$
$\varepsilon=24$ volt
Ans. A,B,C,D
[:Q.58] In the experiment with Lummer Gehrecke plate, the two coherent beams of light, caused by multiple reflection inside the transparent plate of refractive index $\mu=1.54$, reach the points P and Q on the screen. The net path different between the two beams reaching either of P or Q is $\Delta x=5000 \mathrm{~mm}$. Which of the wavelengths in the visible range $(\lambda=390 \mathrm{~nm}$ to $\lambda=780 \mathrm{~nm})$ is/are most likely to produce a constructive interference (a maximum) at the point P as well as at Q on the screen.

[:A] 416.67 nm
[:B] 555.46 nm
[:C] 625.00 nm
[:D] 666.70 nm
[:ANS] A, B, C
[:SOLN] \because for maxima $\Rightarrow \Delta x=n \lambda$
$\therefore \mathrm{n} \lambda=5000 \Rightarrow \lambda=\frac{5000}{\mathrm{n}}$
$\because 390 \leq n \leq 780390 \leq \frac{5000}{n} \leq 780$
$\therefore \mathrm{n}=7,8,9,10,11,12$
$\therefore \lambda_{1}=714, \lambda_{2}=625, \lambda_{3}=555.56, \lambda_{4}=500, \lambda_{5}=454, \lambda_{6}=416.67$

$$
\therefore \text { Ans } \rightarrow \mathrm{A}, \mathrm{~B}, \mathrm{C}
$$

[:Q.59] Two identical transparent solid cylinders, each of radius 10 cm and refractive index $\mu=\sqrt{3}$, the horizontally parallel to each other on a horizontal plane mirror with a separation x between their horizontal axes. A ray of light is incident horizontally on the cylinder A at a height h above the plane mirror so as to emerge from this cylinder at a height $h_{1}=-0.1 \mathrm{~m}$ above the plane mirror. The ray emerging out from the first cylinder. A is reflected from the horizontal plane mirror to enter the second parallel cylinder B at a height h_{2} and then this ray emerges out of the second cylinder, parallel and in-life with the original incident ray. The correct statement(s) is/are :
[:A] the height h above the plane mirror is $\mathrm{h}=18.7 \mathrm{~cm}$
[:B] the ray enters the second cylinder B at a height $h_{2}=0.1 \mathrm{~m}$
$[: C]$ the separation between the axes of the two cylinders A and B is $x=31.54 \mathrm{~cm}$
[:D] the angle of incidence of the plane mirror midway between the two cylinders of $\theta=30^{3}$
[:ANS] A, B, C, D
[:SOLN]

$\because \sin i=\sqrt{3} \sin r \Rightarrow \sin 2 r=\sqrt{3} \sin r$
$2 \sin r \cdot \cos r=\sqrt{3} \sin r$
$r=30^{\circ}$
$\therefore \mathrm{i}=60^{\circ}$
$\because h=\left(0.1+0.1 \sin 60^{\circ}\right) \mathrm{m}$

$$
=18.7 \mathrm{~cm}
$$

$\because \frac{x}{2}=\left(0.1+0.1 \cot 60^{\circ}\right) \times 100 \mathrm{~cm}$
$x=31.54 \mathrm{~cm}$
$\because i+\theta=90^{\circ} \Rightarrow \theta=30^{\circ}$
[:Q.60] In the working of a $\mathrm{p}-\mathrm{n}$ junction
[:A] diffusion current dominates when the junction is forward biased
[:B] drift current dominated when the junction is reverse biased
[:C] depletion region width decreases with increase is forward bias voltage.
$[: D]$ the electric field in the depletion region depends on the number of ionized dopants rather then the dopant density.
[:ANS] A, B, C, D
[:SOLN] \because Diffusion current is due to majority corner and drift current is due to minority carrier Electric field in depletion layer will be due to ionized dopants.

