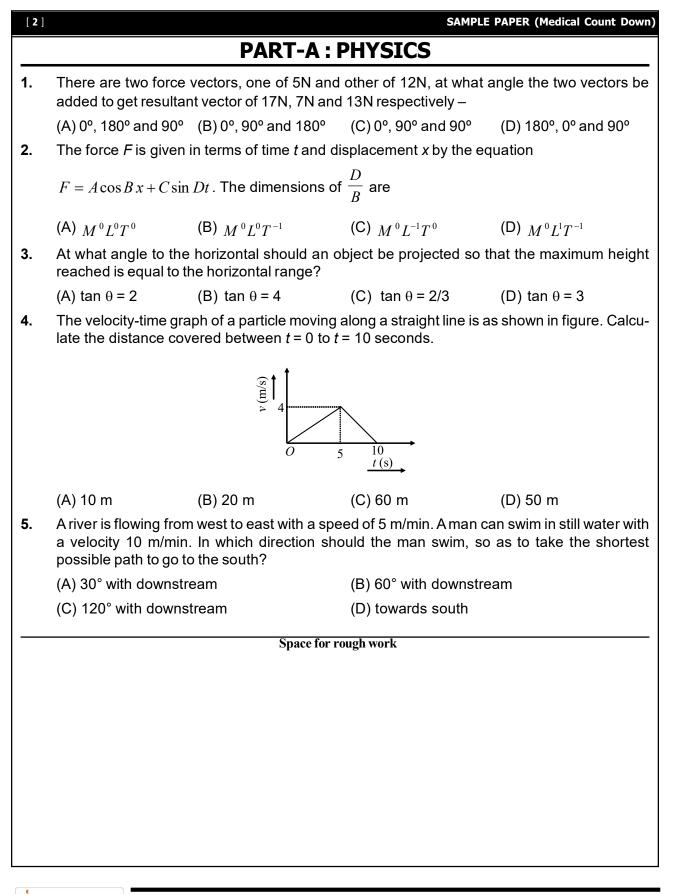


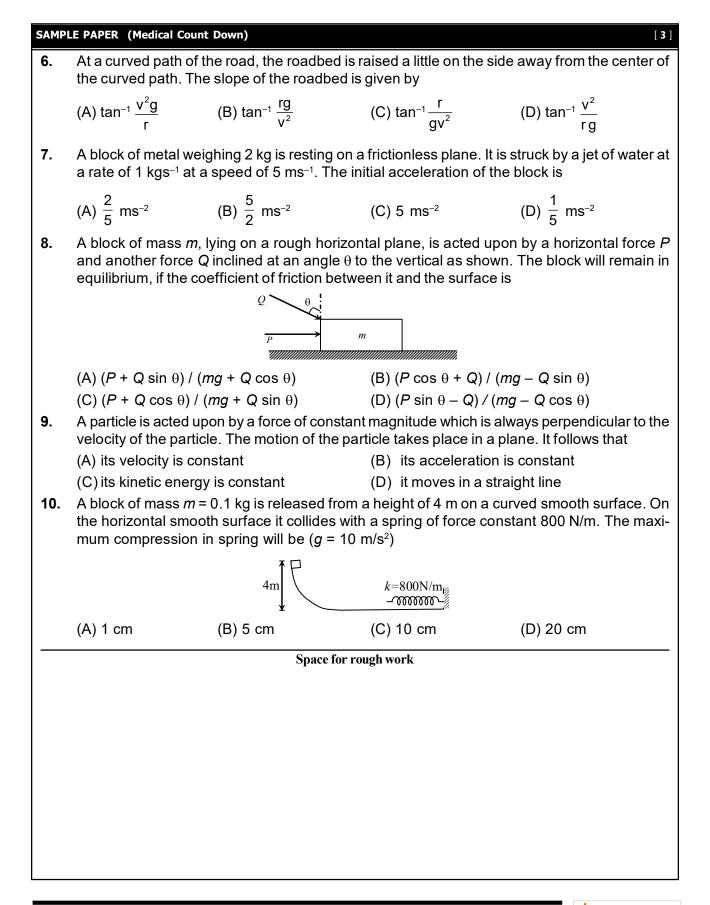
ADMISSION CUM SCHOLARSHIP TEST

SAMPLE TEST PAPER

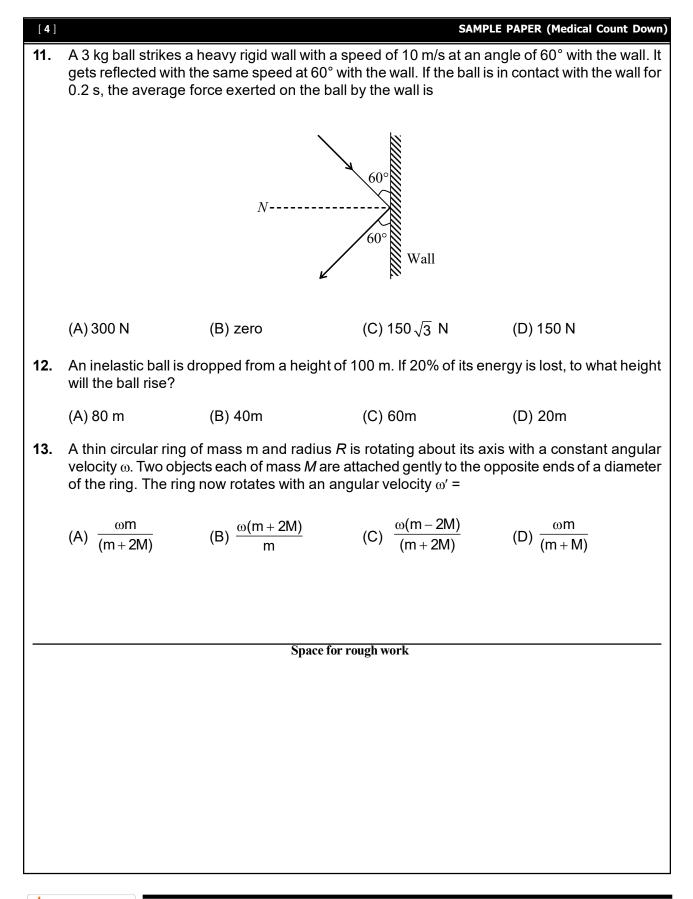
(For Students Going to Class 12TH IN 2024)


STREAM : MEDICAL | **COURSE OFFERED** : MEDICAL COUNTDOWN

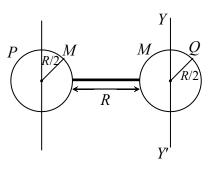
Time : 2 hours


Maximum Marks: 240

		INSTRUCTIONS			
OR.	(A)	General :			
ILAI	1.	This Question paper contains THREE parts (Physics, Chemistry and Biology).			
DIVIC	2.	This Question Paper contains 14 pages, other than the OMR.			
SEALS ON THIS BOOKLET, AWAIT INSTRUCTIONS FROM THE INVIGILATOR	3.	This Question Paper contains total 60 questions, 20 questions each in Physics, Chemistry and Biology .			
NS FRO	4.	The Question Paper has blank spaces at the bottom of each page for rough work.No additional sheets will be provided for rough work.			
RUCTIO	5.	Blank papers, clip boards, log tables, slide rule, calculators, cellular phones, pagers and electronic gadgets, in any form, are NOT allowed.			
NSTI	6.	This booklet also contains the OMR answer sheet (i.e., A machine gradable Response Sheet).			
AITI	(B)	Answering on the OMR:	4		
I, AW	7.	Each question will have 4 choices in both the Sections, out of which only one choice is correct .			
KLEJ	8.	Fill the bubble with Ball Pen (Blue or Black) ONLY.			
300	(C)	Filling – Name and Registration No.	5		
N THIS E	9.	On the OMR sheet , write your Name and Registration No. using ball pen. Also, put your signature in the appropriate box using ball pen.			
LS O	(D)	Marking Scheme:			
HE SEA	9.	(a) For each question, you will be awarded 4 marks if you have darkened only one bubble corresponding to the right answer.			
λKΤŀ		(b) In case you have not darkened any bubble, you will be awarded 0 mark for that question.			
8RE⊿		(c) In all other cases, you will be awarded –1 mark .			
<pre>corresponding to the right answer. (b) In case you have not darkened any bubble, you will be awarded 0 mark for that question. (c) In all other cases, you will be awarded –1 mark. Name:</pre>					
	Registration No.:				


Mentors Eduserv : Plot No. : 136/137, Parus Lok Complex, Boring Road Crossing, Patna-1

Mentors Eduserv®


Mentors Eduserv®

SAMPLE PAPER (Medical Count Down)

14. Two spheres each of mass M and radius R/2 are connected with a massless rod of length R as shown in the figure. The moment of inertia of the system about an axis passing through the centre of one of the spheres and perpendicular to the rod is

(A)
$$\frac{21}{5}$$
MR² (B) $\frac{2}{5}$ MR² (C) $\frac{5}{2}$ MR² (D) $\frac{5}{21}$ MR²

15. Two water pipes of diameters 2 cm and 4 cm are connected with the main supply line in sereis. The velocity of flow of water in the pipe of 2 cm diameter is

(A) 4 times that in the other pipe (B) $\frac{1}{4}$ times that in the other pipe (C) 2 times that in the other pipe (D) $\frac{1}{2}$ times that in the other pipe

16. Work done in splitting a drop of water of 1 mm radius into 64 droplets is (Surface tension of water is $72 \times 10^{-3} \text{ J/m}^2$)

(A) 2.0×10^{-6} J (B) 2.7×10^{-6} J (C) 4×10^{-6} J (D) 5.4×10^{-6} J

Space for rough work

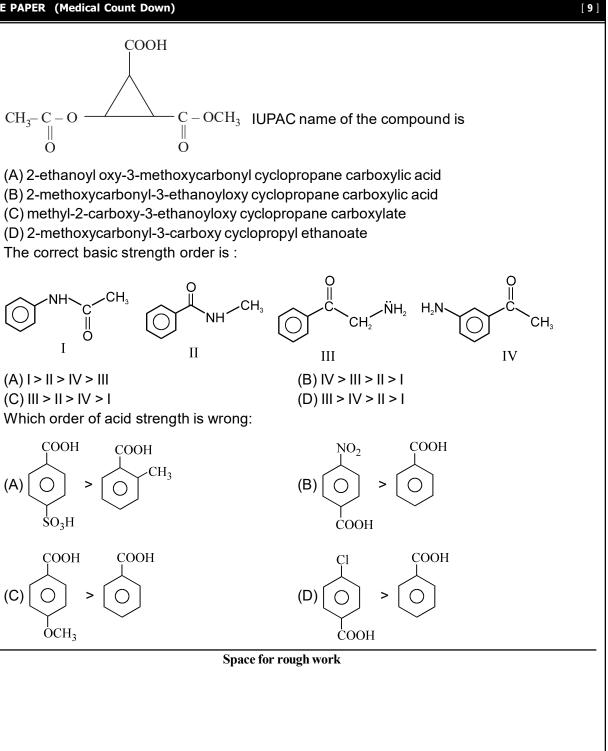
[5]

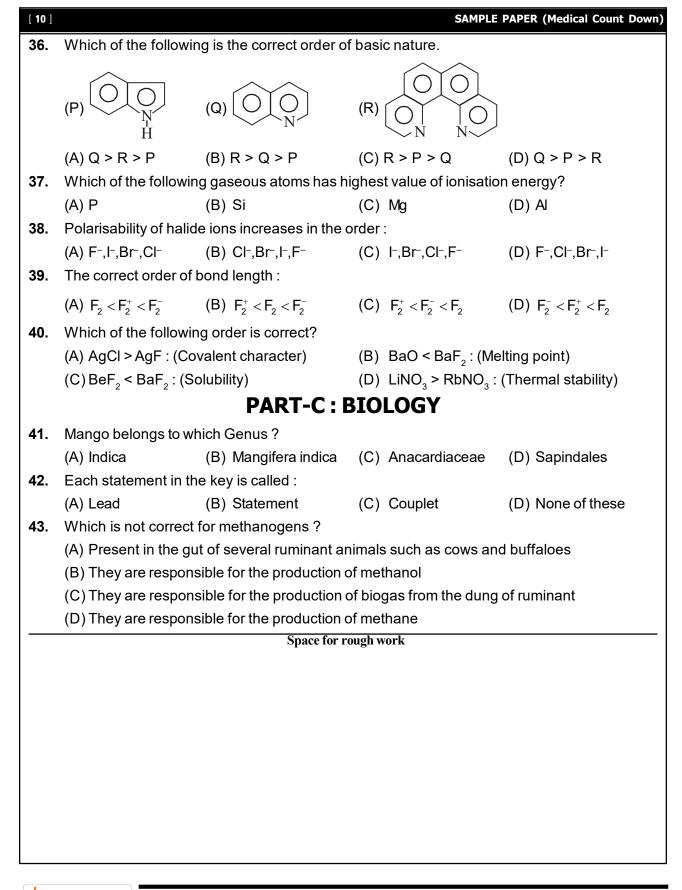
[6]			SAMI	PLE PAPER (Medical Count Down)		
17.	On a smooth inclined plane a body of mass <i>M</i> is attached between two springs. The other ends of the springs are fixed to firm supports. If each spring has a force constant <i>k</i> , the period of oscillation of the body is (assuming the spring as massless)					
	k of the second with the second secon					
		A B				
	(A) $2\pi\sqrt{\frac{M}{2k}}$	(B) $2\pi\sqrt{\frac{2M}{k}}$	(C) $2\pi \sqrt{\frac{M\sin\theta}{2k}}$	(D) $2\pi\sqrt{\frac{2M\sin\theta}{k}}$		
18.	0 0	ut 450 Hz, approaches a erver in Hz is (speed of	•	eed of 33 m/s. The frequency		
	(A) 409	(B) 429	(C) 517	(D) 500		
19.	9. If the temperature of the sun is increased from T to $2T$ and its radius from R to $2R$, then the ratio of the radiant energy received on earth to what it was previously will be					
	(A) 4	(B) 16	(C) 32	(D) 64		
20.		square velocity of the gas molecules is 300 m/s. What will be the root i f the molecules if the atomic weight is double and absolute temperati				
	(A) 300 m/s	(B) 150 m/s	(C) 600 m/s	(D) 75 m/s		
		Space	for rough work			
		Space	for rough work			

		PART-B:	CHEMISTRY			
21.	21. XeF ₆ fluorinates I ₂ to IF ₇ and liberates Xenon(g). 210 mmol of XeF ₆ can yield a may of mmol of IF ₇ ; [7XeF ₆ + 3I ₂ \rightarrow 7Xe + 6IF ₇]					
	(A) 420	(B) 180	(C) 210	(D) 245		
22.	()		()	produce 11.2 litre oxygen at		
	(A) $\frac{1}{2}$ mol	(B) $\frac{1}{3}$ mol	(C) $\frac{1}{4}$ mol	(D) $\frac{2}{3}$ mol		
23.	The correct set	ect set of quantum numbers for unpaired electrons of chlorine a		chlorine atom is		
	n	ℓ m				
	(A) 2	1 0				
	(B) 2	1 1				
	(C)3	1 1				
	(D)3	0 0				
24.	Which of the following does not characterise X - rays ?					
	(A) The radiation can ionise gases					
	(B) It causes ZnS to flurescence					
	(C) Deflected by electric and magnetic field					
	(D) have wavelengths shorter than ultraviolet rays					
25.	The root mean s	square speed of 8 g of H	le is 300 ms ⁻¹ . Total kin	etic energy of He gas is :		
	(A) 120 J	(B) 240 J	(C) 360 J	(D) None of these		
26.	stopcock. Bulb A		n ³ and contained the ga	by a very small tube having a s while bulb B was empty. On me of the bulb B is .		
	(A) 100 cm ³	(B) 200 cm ³	(C) 250 cm ³	(D) 400 cm ³		
		Space	for rough work			

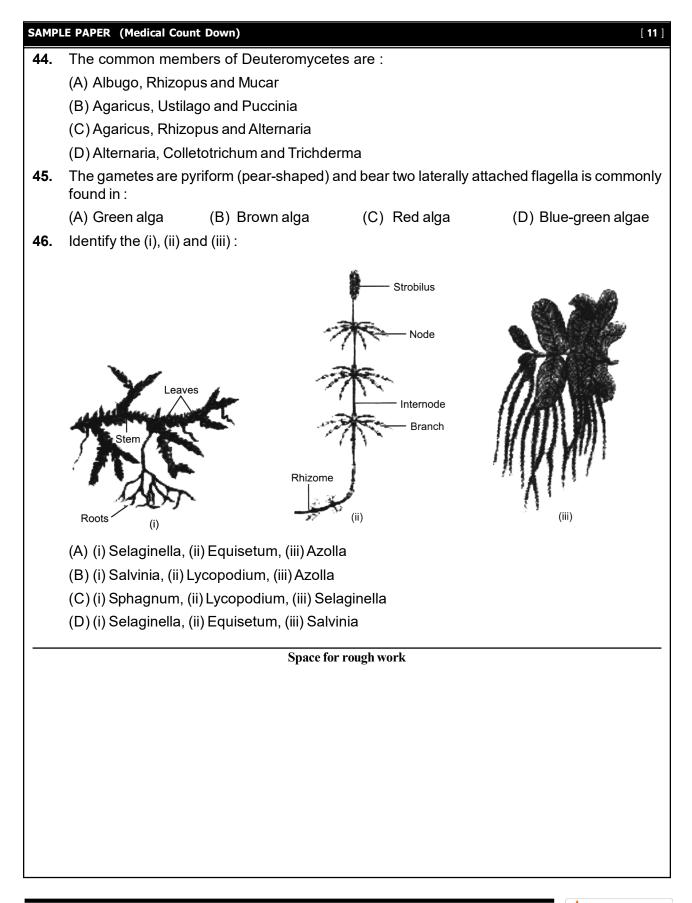
Mentors Eduserv[®]

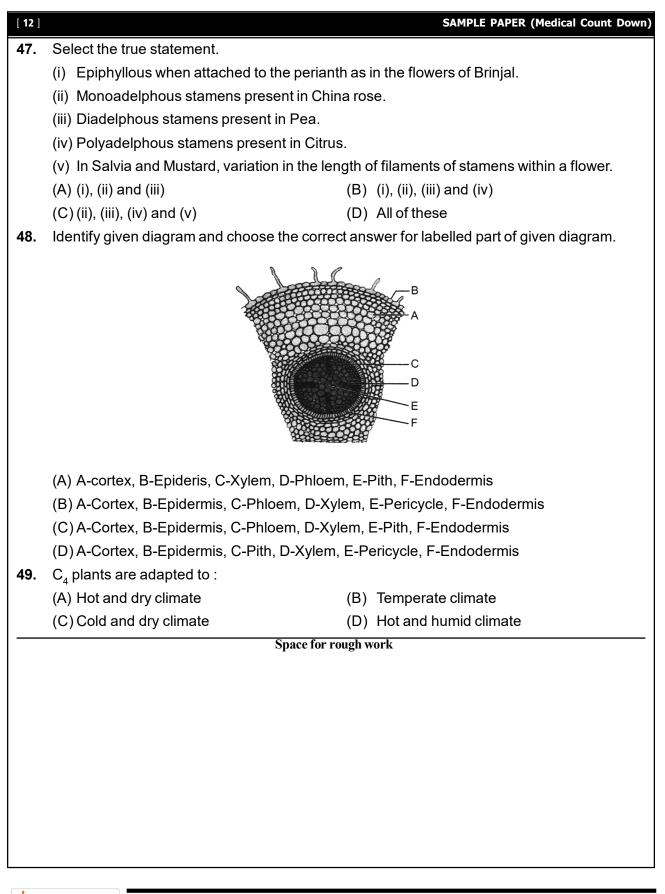
[8]			SAI	MPLE PAPER (Medical Count Down)		
27.	The magnitude of work done in ergs for the reversible expansion of one mole of an ideal gas from a volume of 10 L to 20 L at 25° C is					
	(A) $2.303 \times 298 \times$	0.082 log 2	(B) 298 \times 10 ⁷ \times 8.31 \times 2.303 log 2			
	(C) $2.303 \times 298 \times$	0.082 log 0.5	(D) $2.303 \times 298 \times 2 \log 2$			
28.			maly against a constant external pressure of 1 atm 0 dm ³ . Calculate the work by the gas in joules			
	(A) – 3039 J	(B) –4052 J	(C) -1013 J	(D) –2026 J		
29.	consider a gas ph	hase reaction $2SO_2 + O_2$	\Rightarrow 2SO ₃ . If P _{SO2} ; P _{O2} a	nd P _{so3} represent Equilibrium		
	partial pressue of respective substance. What will be expression of K_p for above reaction?					
	(A) $\frac{P_{SO_3}^2}{P_{SO_2}^2 P_{O_2}}$	(B) $\frac{P_{SO_2}^2 \cdot P_{O_2}}{P_{SO_3}^2}$	(C) $\frac{P_{SO_2} \cdot P_{O_2}^2}{P_{SO_3}}$	(D) $\frac{P_{SO_2}^2 \cdot P_{SO_3}^2}{P_{O_2}}$		
30.	1. The equilibrium constant (K _c) for the reaction $2\text{HCl}(g) \rightleftharpoons \text{H}_2(g) + \text{Cl}_2(g)$ is 4×10^{-34} at 25°C. What is the equilibrium constant for the reaction ? $\frac{1}{2}\text{H}_2(g) + \frac{1}{2}\text{Cl}_2(g) \rightleftharpoons \text{HCl}(g)$					
	2 - 2 -					
31.				(D) None of these		
51.	(A) 12	OH is dissolved in one (B) 2	(C) 6	(D) 10		
32.		concentration and pH o		mixing 100 mL of 1.0 M HNO $_3$		
	(A) [H⁺] = 0.1 M, p	H = 1	(B) [H ⁺] = 0.01 M,	pH = 2		
	(C) $[H^+] = 1 \times 10^{-12} \text{ M}, \text{ pH} = 12$ (D) $[H^+] = 1 \times 10^{-7} \text{ M}, \text{ pH} = 7$		⁷ M, pH = 7			
	Space for rough work					

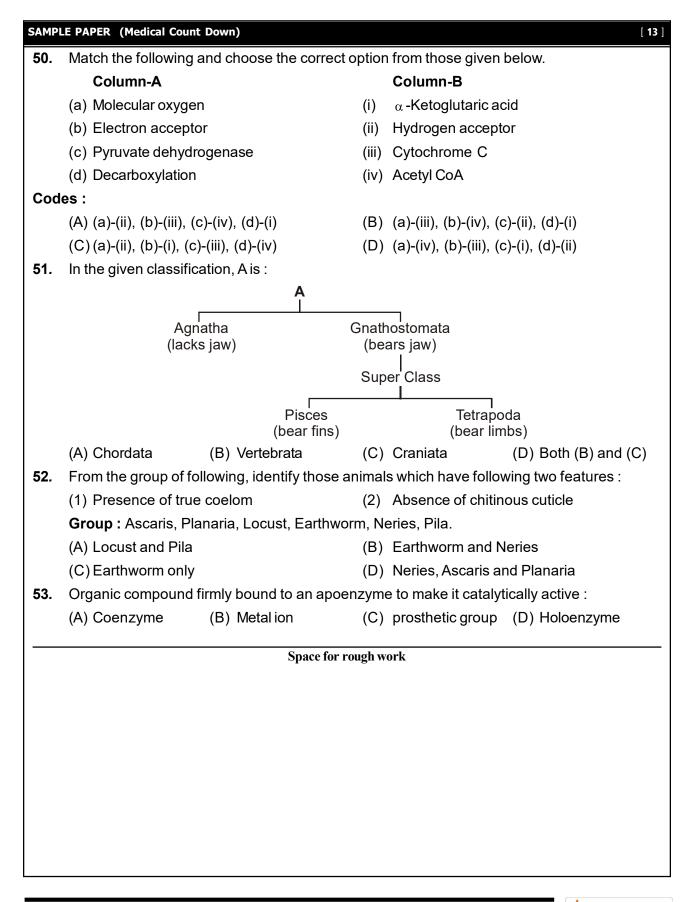



33.

34.


35.




Mentors Eduserv®

[14]			SAI	MPLE PAPER (Medical Count Down)		
54.	NAD and NADP act	as1	and are2	attached to aponenzyme.		
	1		2			
	(A) Coenzymes		Firmly	Firmly		
	(B) Coenzymes		Loosely	Loosely		
	(C) Prosthetic groups		Firmly	Firmly		
	(D) Prosthetic grou	ps	Loosely			
55. Human heart is :						
	(A) Myogenic and E	Endodermal	(B) Myogenic and	d Mesodermal		
	(C) Neurogenic and	l Endodermal				
56 <i>.</i>	Activation of sympa	athetic nervous system	has following efffect	on given characters :		
	Heart Rate	Power of Ventric	cular contaraction	Cardiac output		
	(A) Increase	Increa	ase	Decrease		
	(B) Increase	Decre	ease	Decrease		
	(C) Decrease	Increa	ase	Increase		
	(D) Increase	Increa	ase	Increase		
57 .	Human kidneys are located between the levels of following vertebra :					
	(A) T ₁₀ – L ₁	(B) $T_{12} - L_3$	(C) $T_2 - L_5$	(D) $T_4 - L_1$		
58 .	Cell bodies of neur	Cell bodies of neurons can be observed in :				
	(A) Grey matter	(B) White matter	(C) Nerves	(D) None of these		
59 <i>.</i>	Which part of brain	of brain is located between thalamus and hindbrain?				
	(A) Cerebellum	(B) Midbrain	(C) Cerebrum	(D) pineal gland		
60.	0. Which of the following is not the function of androgens in human?			an?		
(A) Synthesis of proteins and carbohydrates						
	(B) Stimulation of s	permatogenesis				
	(C) Influence the lib	ido				
	(D) Support of preg	nancy				
		Space fo	r rough work			

Mentors Eduserv[®]

(For Students Going to Class 12 [™] IN 2024)						
WN						

