Mentors Eduserv[®]

ADMISSION CUM SCHOLARSHIP TEST SAMPLE TEST PAPER

(For Students Appearing in Class 12TH BOARD IN 2024) <u>STREAM</u> : MEDICAL| <u>COURSE OFFERED</u> : MEDICAL REBOOST

Time : 2 hours

Maximum Marks: 240

.		INSTRUCTIONS						
l OR	(A)	General :						
3ILA7	1.	This Question paper contains THREE parts (Physics, Chemistry and Biology).						
NVIO	2.	This Question Paper contains 14 pages, other than the OMR.						
M THE I	3.	This Question Paper contains total 60 questions, 20 questions each in Physics, Chemistry and Biology .						
NS FRO	4.	The Question Paper has blank spaces at the bottom of each page for rough work.No additional sheets will be provided for rough work.						
RUCTIO	5.	Blank papers, clip boards, log tables, slide rule, calculators, cellular phones, pagers and electronic gadgets, in any form, are NOT allowed.						
NSTI	6.	This booklet also contains the OMR answer sheet (i.e., A machine gradable Response Sheet).						
AITI	(B)	Answering on the OMR:						
I, AW	7.	Each question will have 4 choices in both the Sections, out of which only one choice is correct .						
KLE	8.	Fill the bubble with Ball Pen (Blue or Black) ONLY.						
300	(C)	Filling – Name and Registration No.	5					
IN THIS E	9.	On the OMR sheet , write your Name and Registration No. using ball pen. Also, put your signature in the appropriate box using ball pen.						
VLS C	(D)	Marking Scheme:						
HE SEA	9.	(a) For each question, you will be awarded 4 marks if you have darkened only one bubble corresponding to the right answer.						
١KT		(b) In case you have not darkened any bubble, you will be awarded 0 mark for that question.						
RE/		(c) In all other cases, you will be awarded –1 mark .						
	Registration No.:							

Mentors Eduserv : Parus Lok Complex, Boring Road Crossing, Patna-1

Mentors Eduserv®

SAMPL	E PAPER (Medical Reb	bost)				[3]			
5.	A ball is released on a horizontal floor, from a height of 320 m. Coefficient of restitution for the collision of the ball with the floor is 1/2. The time interval between the second and the third collision of the ball with the floor is:								
	(A) 2 s	(B) 4 s	(C)	6 s	(D)	8 s			
6.	A circular disc of m Velocity of the cen velocity of the disc	ass M and radius F tre of the disc is v. s:	R is rolling Total kinel	(not pure rolling) tic energy of the o	on a h disc is	norizontal surface. 5 11Mv²/4. Angular			
	(A) $\frac{v}{R}$	(B) $\frac{2v}{R}$	(C)	3v R	(D)	$\frac{4v}{R}$			
7.	A spherical solid bal density of the liquid the radius of the ba	l of bulk modulus B is σ (constant). Acc II is:	is taken fro celeration o	m the surface of o due to gravity is g.	cean t The fr	o a depth of h. The actional change in			
	(A) $\frac{\sigma gh}{B}$	(B) $\frac{\sigma g h}{2B}$	(C)	<u>σgh</u> 3B	(D)	$\frac{\sigma g h}{4 B}$			
8.	A block is connecte figure (a). If displace is cut into two equa the figure (b). Now t	d with a spring and ed and released, the I parts and the two p the block will oscilla	placed on e block osc parts are co te with time	a smooth horizon illates with a time onnected with the e period:	tal flo perioc same	or as shown in the d T. Now the spring block as shown in			
		k m (a)		(b)					
	(A) $\frac{T}{\sqrt{2}}$	(B) $\frac{T}{2}$	(C)	т	(D)	2Т			
9.	The velocity of the	wave y = Asin²(ax +	bt) is :						
	(A) $\frac{a}{b}$	(B) <u>b</u>	(C)	<u>2a</u> b	(D)	2b a			
		Snace	for rough we	ork					
		~pure	101 1 0 ug 1 1 1						

Hentors Eduserv[®]

10. The coefficient of thermal conductivity of a rod changes with x (distance from left end) as shown in the graph. The left end of the rod is maintained at 100°C. In the steady state, the temperature of the midpoint of the rod is 50°C. The temperature (t°C) of the right end of the rod will be:

(D) data insufficient.

11. Three particles A, B and C are placed on the vertices of an equilateral triangle. Mass of all particles is same. Charges on the particles A, B and C are +q, -q and +q. The three particles are released simultaneously. Just after the releasing, ratio of the accelerations of the particle A and B (a_A / a_B) will be:

(A) 1 (B) 2 (C)
$$\sqrt{3}$$
 (D) $\frac{1}{\sqrt{3}}$

12. Two particle having same charge +Q are fixed at (0, b) and (2a, b). A third particle of mass m and charge – q is released at (a , b + c). Assuming, c << a, time period of the oscillations of the third particle will be:

(A)
$$2\pi\sqrt{\frac{2\pi\epsilon_0 ma^3}{Qq}}$$
 (B) $\pi\sqrt{\frac{\pi\epsilon_0 ma^3}{Qq}}$ (C) $\pi\sqrt{\frac{2\pi\epsilon_0 ma^3}{Qq}}$ (D) $2\pi\sqrt{\frac{\pi\epsilon_0 ma^3}{Qq}}$

13. Three resistances R, 2R and 3R are connected between A and B as shown in the figure. A current flows in the combination from A to B. The heat generated per second in resistance R is H. The total heat generated in the entire combination, per second, is:

[4]

(A) t > $0^{\circ}C$

SAMPLE PAPER (Medical Reboost)

14. A loop consists of three circular parts lying in the xy, yz and zx planes, such that their centres are common at origin. Radius of these three circular parts is R. A current I flows in the loop. Magnetic field at the origin will be:

(A)
$$\frac{\sqrt{3}\,\mu I}{2R}$$
 (B) $\frac{\sqrt{3}\,\mu I}{4R}$ (C) $\frac{\sqrt{3}\,\mu I}{8R}$ (D) $\frac{\sqrt{3}\,\mu I}{16R}$

15. A charged particle having charge +q and mass m is projected from origin with velocity $v = v_0 \hat{i}$ in the uniform magnetic field $\vec{B} = B_0 \hat{i} + B_0 \hat{j}$. The particle will touch the xy plane for the first time, at:

[5]

_ [0]				SAMPLE PAPER (Medical Reboost)			
16.	A rectangular loop of side lengths a and b, and total resistance R is placed in a uniform magnetic field B. The magnetic field exists only on the left side of the vertical line shown in the figure. The magnetic field is perpendicular to the plane of paper, and the loop is in the plane of paper. Initially the loop is completely inside the magnetic field, and it pulled out of the magnetic field at a constant speed v, as shown in the figure. Total heat generated in the loop will be:						
	(A) $\frac{B^2b^2 va}{4R}$	(B) $\frac{B^2b^2va}{2R}$		$ \begin{array}{c} & & a \\ & & & \\ \uparrow & & \\ b & & \otimes B \end{array} \rightarrow v $			
	(C) $\frac{B^2b^2 va}{R}$	(D) $\frac{2B^2b^2 va}{R}$		↓ []			
17.	The rms value o	of the current I = $(20\sqrt{2})$	A)sin (10 π t) is				
	(A) 10 A	(B) 10√2 A	(C) 20 A	(D) 20√2 A			
18.	A point object m of the object is 1 from the lens be	oves on the principal ax cm/s. The speed of the ecomes 15 cm, is:	kis of a convex lens of f e image at the moment	ocal length 10cm. The speed the distance of the object			
	(A) 1 cm/s	(B) 2 cm/s	(C) 3 cm/s	(D) 4 cm/s.			
19.	The radius of the electron in H in t	e orbit of electron in He [.] the second shell is r ₂ . T	⁺ in the fourth shell is r ₁ . he ratio r ₁ /r ₂ is:	The radius of the orbit of			
	(A) 1	(B) 1/2	(C) 2	(D) 4			
20.	What is the cor	mponent of $3\hat{i} + 4\hat{j}$ alon	$\hat{g}_{\hat{i}+\hat{j}}$?				
	(A) $\frac{7}{2}(\hat{i}+\hat{j})$	(B) $\frac{3}{2}(\hat{i}+\hat{j})$	(C) $\frac{5}{2}(\hat{i}+\hat{j})$	(D) $\frac{1}{2}(\hat{i}+\hat{j})$			
		Space	for rough work				

		PART-B:	CHEMISTRY				
21.	Freezing point of an aqueous solution is (–0.186)°C. Elevation of boiling point of the same solution is $K_b = 0.512$ °C, $K_f = 1.86$ °C, find the increase in boiling point.						
	(A) 0.186 °C	(B) 0.0512 °C	(C) 0.092 °C	(D) 0.2372 °C			
22.	The value of $(n_2 + n_1)$ and $(n_2^2 - n_1^2)$ for He ⁺ ion in atomic spectrum are 4 and 8 respectively. The wavelength of emitted photon when electron jump from n_2 to n_1 is						
	(A) $\frac{32}{9}$ R _H	(B) $\frac{9}{32}$ R _H	(C) $\frac{9}{32 R_{\rm H}}$	(D) $\frac{32}{9R_{\rm H}}$			
23.	For a certain gas v found to be non - l	which deviates a little fr inear, the intercept on y	rom ideal behaviour. A y -axis will be :	a plot between $P / \rho vs P$ was			
	(A) $\frac{\text{RT}}{\text{M}}$	(B) $\frac{M}{RT}$	(C) $\frac{MZ}{RT}$	(D) R TM			
24.	The dissociation co	$P_{3}^{(NH_3)_2}$	into Ag ⁺ and NH ₃ is 10	$^{-13}$ at 298 K. If $E^{o}_{A\sigma^{+}/A\sigma} = 0.8 V$			
	then E ^o for the half cell $[Ag(NH_3)_2]^+ + e^- \longrightarrow Ag + 2NH_3$ will be						
	(A) 0.33 V	(B) –0.33 V	(C)-0.033 V	(D) 0.033 V			
25.	A solution contains 0.09 M HCI, 0.09 M CCI ₂ HCOOH, and 0.1 M CH ₃ COOH. If total [H ⁺] = 0.1 M and K _a for CH ₃ COOH = 10^{-5} , K _a for CCI ₂ HCOOH is -						
	(A) 1.35 × 10 ⁻⁴		(B) 0.18 × 10 ⁻²				
	(C) 0.18 × 10 ^{−5}		(D) 1.25 × 10 ⁻²				
26.	In a first order reaction, the concentration of the reactant, decreases from 0.8 M to 0.4 M is 15 minutes. The time taken for the concentration to change 0.1 M to 0.025 M is						
	(A) 7.5 minutes	(B) 15 minutes	(C) 30 minutes	(D) 60 minutes			
		Space fo	r rough work				

[12]		SAMPLE PAPER (Medical Reboost)				
45.	A piece of wood having no vessels (trachea) must	be belong to :				
	(A) Teak (B) Mango	(C) Pine (D) Palm				
46.	Inheritance of skin colour in humans is an example	e of				
	(A) Point mutation	(B) Polygenic inheritance				
	(C) Codominance	(D) Chromosomal aberration				
47.	Transformation was discovered by	/= \				
	(A) Meselson and Stahl	(B) Hershey and Chase				
40	(C) Griffith	(D) Watson and Crick				
48.	I he organism, used for alcohol fermentation, is					
40	(A) Aspergilius (B) Saccharomyces	(C) Pseudomonas (D) Penicilium				
49.	(A) H1 H2A H2B and H2					
	$(A) \square I, \square ZA, \square ZD all U \square J$	(D) H_{1} , H_{2} , H_{2} , H_{2} , H_{4}				
50	(C) TI, TZA, TZD, TS allu T4 What is not true for genetic code 2	(D) H2A, H2B, H3 and H4				
50.	(A) It is nearly universal (B) It is degenerate					
	(C) It is unambiguous (D) A codon is mRNA	is read in a non-contiguous				
51	What is the correct labelling of diagram giv	an below? Choose the correct option				
51.	accordingly?					
	 (A) A–Fundic portion, B–Cardiac region, C–Pyloric region, D–Food pipe, E–Wind pipe (B) A–Fundus, B–Pyloric region, C–Cardiac region, D–Oesophagus, E–Duodenum (C) A–Fundic region, B–cardiac region, C–Pyloric region, D–Oesophagus, E–Duodenum (D) A–Cardiac region, B–Pyloric region, C–Fundic region, D–Oesophagus, E–Duodenum 					
	Space for rough work					

SAMPLE PAPER (Medical Reboost) [13]								
52.	52. Given below are four methods (A–D) and their modes of action (p–s) in achieving contraception.							
	Select their correct matching from the four options that follow :							
	Method Mode of Action			Mode of Action				
	A.	The pill	(p)	Prevents sperms reaching cervix				
	Β.	Condom	(q)	prevents sperms motility.				
	C.	Vesectomy	(r)	prevents ovulation				
	D.	Copper T	(s)	Semen contains no sperms				
Cod	es :							
	(A)	A – (q), B–(r), C–(p), D–(s)	(B)	A – (r), B–(p), C–(s), D–(q)				
	(C)	A – (s), B–(p), C–(q), D–(r)	(D)	A – (r), B–(s), C–(p), D–(q)				
53.	Wł	nat is true for an ideal contraceptive ?						
	I.	It should be user-friendly						
	II.	It should be easily available.						
	III.	It should be ineffective and revesible with	n least si	de effects.				
	IV.	It should be effective and reversible with	least sic	le effects.				
	V.	It should interfere with the sexual act of t	he user					
	(A)	All (B) I, II, III	(C)	I, II, IV (D) I, II, IV, V				
54.	So you	metimes the labor pains are less and uter u think the doctors inject to facilitate delive	ine contı ry?	actions have to be induced. What do				
	(A)	Progesterone and estrogen hormones	(B)	Oxytocin / Pitocin				
	(C)	FSH and LH	(D)	Relaxin				
		Space for rou	gh work					
		Space for For	8					

Mentors Eduserv[®]

[14]			SAMPLE	PAPER (Medical Reboost)		
55.	If both ovaries are removed from pregnant human female after first trimester of pregnancy then it will lead to					
	(A) Abortion		(B) Normal develo	pment of foetus		
	(C) Irregular ovulation (no	o fixed time interval)	ie interval) (D) Menarche			
56.	Which is a typical examp	Which is a typical example of 'feedback inhibition?				
	(A) cyanide and cytochro					
	(B) sulpha drugs and folic acid synthesizer bacteria					
	(C) allosteric inhibition of	hexokinase by glucos	e 6–phosphate			
	(D) reaction between suc	ccinic dehydrogenase	and succinic acid.			
57.	During one circuit of bloc percentage of O ₂ giving u	nd from lungs to tissue up by Hb to tissues is	es and back through c :	circulatory system, the		
	(A) 25%	(B) 40%	(C) 60%	(D) 97%		
58.	Find out the source/s of of primitive Earth :	energy for the synthes	sis of complex molecu	les in the atmosphere		
	(A) Lightning and cosmic rays (B) Volcanic heat and L			and UV radiation		
	(C) Soil radioactivity / so	il high temperature	(D) All of the above			
59.	During the successive ev the :	olution of living forms,	s, anaerobic photoautotroph appeared before			
	(A) Origin of life		(B) Chemoheterot	roph		
	(C) Chemoautotroph		(D) Aerobic photoa	autotroph		
60.	Which of the following is I	not a ventricle of huma	n brain ?			
	(A) Metacoel	(B) Paracoel	(C) Neurocoel	(D) Diocoel		
		Space for rough	ı work			

SAMPLE PAPER (Medical Reboost)									
ANSWER KEYS									
	SAMDIE TEST DADED								
	(For Students Appearing in Class 12 ¹ BOARD IN 2024)								
	<u>STREAM</u> : MEDICAL <u>COURSE OFFERED</u> : MEDICAL REBOOST								
		PHYS	ICS						
1.	(A)	2. (A)	3.	(D)	4.	(A)			
5.	(B)	6. (C)	7.	(C)	8.	(B)			
9.	(B)	10. (B)	11.	(D)	12.	(A)			
13.	(C)	14. (C)	15.	(A)	16.	(C)			
17.	(C)	18. (D)	19.	(C)	20.	(A)			
		CHEMI	STR	Y					
21.	(B)	22. (C)	23.	(A)	24.	(D)			
25.	(D)	26. (C)	27.	(A)	28.	(D)			
29.	(B)	30. (C)	31.	(C)	32.	(C)			
33.	(D)	34. (B)	35.	(D)	36.	(C)			
37.	(A)	38. (C)	39.	(A)	40.	(B)			
		BIOLO	DGY						
41.	(B)	42. (D)	43.	(C)	44.	(D)			
45.	(C)	46. (B)	47.	(C)	48.	(B)			
49.	(D)	50. (D)	51.	(C)	52.	(B)			
53.	(C)	54. (B)	55.	(B)	56.	(C)			
57.	(A)	58. (D)	59.	(D)	60.	(C)			

Hentors Eduserv[®]

[15]