

[:ANS]	С						
[:SOLN]	Equa	ation of axis	$y-3=2\bigg($	$\left(x-\frac{3}{2}\right)$			
			y - 2x = 0				
	foot	of directrix					
	3	y - 2x = 0					
	&		\Rightarrow (0, 0)				
	2	2y + x = 0					
	Focu	s = (3, 6)					
	$PS^2 =$	$= \mathbf{PM}^2$					
	(x –	$(y-6)^2 = \left(\frac{x-1}{2}\right)^2$	$\left(\frac{+2y}{\sqrt{5}}\right)^2$				
	$4x^2$	$+y^2 - 4xy - 30x - 6$	0y + 225 = 0				
	Com	pare, we get $\alpha = 4$	$\beta, \beta = 1, \gamma = 4$	$\Rightarrow \alpha + \beta + \gamma =$	= 9		
[:Q.3]	Grou numt	p A consists of 7 per of ways, 4 boys	boys and 3 and 4 girls	girls, while gr can be invited	oup B cor for a picnie	nsists of 6 boys c if 5 of them mu	and 5 girls. The st be from group
	A an	d the remaining 3 fi	rom group B,	is equal to :			
	[:A]	8925					
	[:B]	9100					
	[:C]	8575					
	[:D]	8750					
[:ANS]	Α						
[:SOLN]		Group A		Group B			
	Tot	al Boys 7 Total gi	rls 3 Total I	Bovs 6 Total	Girls 5	Total Selection	1

Total Boys 7	Total girls 3	Total Boys 6	Total Girls 5	Total Selection
2	3	2	1	$^{7}\mathrm{C}_{2} \times {}^{3}\mathrm{C}_{3} \times {}^{6}\mathrm{C}_{2} \times {}^{5}\mathrm{C}_{1}$
3	2	1	2	$^{7}\mathrm{C}_{3} \times {}^{3}\mathrm{C}_{2} \times {}^{6}\mathrm{C}_{1} \times {}^{5}\mathrm{C}_{2}$
4	1	0	3	$^{7}C_{4} \times {}^{3}C_{1} \times {}^{6}C_{0} \times {}^{5}C_{3}$

Total ways = 1575 + 6300 + 1050 = 8925

[:Q.4]

Let the points $\left(\frac{11}{2}, \alpha\right)$ lie on or inside the triangle with sides x + y = 11, x + 2y = 16 and

Mentors Eduserv®

B : let
$$\sqrt{x} = t < 2$$

Then $\sqrt{x} (\sqrt{x} - 4) + 3(\sqrt{x} - 2) + 6 = 0$
 $\Rightarrow t^2 - 4t + 3t - 6 + 6 = 0$
 $\Rightarrow t^2 - 4t + 3t - 6 + 6 = 0$
 $\Rightarrow t^2 - 7t + 12 = 0 \Rightarrow t = 3, 4$
 $x = 9, 16$
 \therefore Total number of solutions =
N(A \cup B) = 4 + 4 = 8
[:Q.7] If the system of equations
 $x + 2y - 3z = 2$
 $2x + \lambda y + 5z = 5$
 $14x + 3y + \mu z = 33$
Has infinitely many solutions, then $\lambda + \mu$ is equal to :
[:A] 11
[:B] 13
[:C] 12
[:D] 10
[:ANS] C
[:SOLN] $\Delta = \begin{vmatrix} 1 & 2 & -3 \\ 2 & \lambda & 5 \\ 14 & 3 & \mu \end{vmatrix} = 0, \lambda \mu + 42\lambda - 4\mu + 107 = 0$
 $\Delta_1 = 2\lambda\mu + 99\lambda - 10\mu + 255$
 $\Delta_2 = 13 - \mu$
 $\Delta_3 = 5\lambda + 5$
 $\Delta_2 = 0 \Rightarrow \mu = 13 \& \Lambda_3 = 0 \Rightarrow \lambda = -1$

[6]	JEE MAIN 2025 DATE : 24 JAN 2025 (SHIFT-2) EVENING
[:Q.8]	Let (2, 3) be the largest open interval in which the function $f(x) = 2 \log_e(x - 2) - x^2 + ax + 1$ is
	strictly increasing and (b, c) be the largest open interval, in which the function
	$q(x) = (x - 1)^3(x + 2 - a)^2$ is strictly decreasing. Then 100(a + b - c) is equal to:
	[:A] 360
	[:B] 160
	[:C] 280
	[:D] 420
[:ANS]	Α
[:SOLN]	$f'(x) = \frac{2}{x-2} - 2x + a \ge 0$
	$f''(x) = \frac{2}{x-2} - 2x + a \ge 0$
	f'(x)↓
	$f'(x) \ge 0$
	$2 - 6 + a \ge 0$
	$a \ge 4 \Rightarrow a_{min} = 4$
	$g(x) = (x-1)^3 (x+2-a)^2$
	$g(x) = (x-1)^3 (x-2)^2$
	$g'(x) = (x-1)^3 2(x-2) + (x-2)^2 3(x-1)^2$
	$= (x-1)^{2} (x-2) (2x-2+3x-6)$
	$= (x-1)^{2} (x-2) (5x-8) < 0$
	$x \in \left(\frac{8}{5}, 2\right)$
	$100(a + b - c) = 100\left(4 + \frac{8}{5} - 2\right) = 360$
[:Q.9]	Suppose A and B are the coefficients of 30 th and 12 th terms respectively in the binomial
	expansion of $(1 + x)^{2n-1}$. If 2A = 5B, then n is equal to:
	[:A] 21
	[:B] 19
	[:C] 20

	JEE MAIN 2025 DATE : 24 JAN 2025 (SHIFT-2) EVENING	[7]
	[:D] 22	
[:ANS]	Α	
[:SOLN]	Coefficient of 30^{th} term = A	
	:. $A = {}^{2n-1}C_{29}$ and $B = {}^{2n-1}C_{11}$	
	A/q,	
	$2^{2n-1}C_{29} = 5^{2n-1}C_{11}$	
	$2\frac{(2n-1)!}{29!(2n-30)!} = 5\frac{(2n-1)!}{(2n-12)!11!}$	
	$\frac{1}{2912 \cdot 5} = \frac{1}{(2n-12)(2n-13)(2n-29)2}$	
	$\frac{1}{30 \cdot 29 \dots 12} = \frac{1}{(2n-12)(2n-13)\dots(2n-29)12}$	
	$2n - 12 = 30 \Rightarrow n = 21$	
[:Q.10]	Let $\vec{a} = 3\hat{i} - \hat{j} + 2\hat{k}$, $\vec{b} = \vec{a} \times (\hat{i} - 2\hat{k})$ and $\vec{c} = \vec{b} \times \hat{k}$. Then the projection of $\vec{c} - 2\hat{j}$ on \vec{a} is:	
	[:A] 3√7	
	[:B] √14	
	[:C] 2√14	
	[:D] 2√7	
[:ANS]	C	
[:SOLN]	$\vec{b} = \vec{a} \times (\hat{i} - 3\hat{k})$	
	$\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & -1 & 2 \\ 1 & 0 & -2 \end{vmatrix} = 2\hat{i} + 8\hat{j} + \hat{k}$	
	$\vec{c} = \vec{b} \times \hat{k} = 8\hat{i} - 2\hat{j}$	
	$\vec{c}-2\hat{j}=8\hat{i}-4\hat{j}$	
	Now, Projection of $(\hat{i} - 2\hat{j})$ on \vec{a}	

$$\begin{aligned} & \left(\ddot{v}-2\dot{j}\right).\dot{a}=\frac{(8,-4,0).(3,-1,2)}{\sqrt{14}} \\ &=\frac{28}{\sqrt{14}}=2\sqrt{14} \\ \\ & \left[:\mathbf{Q}.11\right] \quad \text{if } 7=5+\frac{1}{7}(5+\alpha)+\frac{1}{7^2}(5+2\alpha)+\frac{1}{7^3}(5+3\alpha)+\ldots,\infty, \text{ then the value of } \alpha \text{ is :} \\ & \left[.A\right] \quad \frac{1}{7} \\ & \left[.B\right] \quad \frac{6}{7} \\ & \left[:C\right] \quad 1 \\ & \left[:D\right] \quad 6 \\ \\ & \left[:ANS\right] \quad \mathbf{D} \\ \\ & \left[:SOLN\right] \\ & \text{Let } S=5+\frac{1}{7}\left(5+\alpha\right)+\frac{1}{7^2}(5+2\alpha)+\ldots, \\ & \frac{1}{7}S=-\frac{1}{7}(5) + \frac{1}{7^2}(5+\alpha)+\ldots,\infty \\ & \frac{6}{7}(S) = 5+\frac{1}{7}\alpha \left(\frac{1}{1-\frac{1}{7}}\right) \Rightarrow \quad 6=5+\frac{\alpha}{6} \Rightarrow \alpha=6 \\ \\ & \left[:Q.12\right] \quad \text{Let } A=[a_{ij}] \text{ be a square matrix of order 2 with entries either 0 or 1. Let E be the event that an invertible matrix. Then the probability P(E) is : \\ & \left[.A\right] \quad \frac{4}{8} \\ & \left[.B\right] \quad \frac{3}{8} \\ & \left[:C\right] \quad \frac{5}{8} \\ & \left[:D\right] \quad \frac{3}{16} \end{aligned}$$

A is

[:SOLN] C-I $\begin{vmatrix} 1 & 1 \\ 0 & 1 \end{vmatrix} \rightarrow 4$ ways C-II $\begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} \& \begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix} \rightarrow 2$ ways Probability P(E) = $\frac{\text{favourable}}{\text{total}} = \frac{6}{16} = \frac{3}{8}$ [:Q.13] Let [x] denote the greatest integer function, and let m and n respectively be the numbers of the points, where the function f(x) = [x] + |x-2|, -2 < x < 3, is not continuous and not differentiable. Then m + n is equal to: [:A] 7 [:B] 9 [:C] 8 [:D] 6 [:ANS] С **[:SOLN]** f(x) = [x] + |x-2| - 2 < x < 3 $f(x) = \begin{cases} -x, & -2 < x < -1 \\ -x+1, & -1 \le x < 0 \\ -x+2, & 0 \le x < 1 \\ -x+3, & 1 \le x < 2 \\ x & 2 \le x < 3 \end{cases}$ So f(x) is not continuous at 4 points and not differentiable at 4 point So m + n = 4 + 4 = 8 In an arithmetic progression, if S_{40} = 1030 and S_{12} = 57, then $S_{30} - S_{10}$ is equal to : [:Q.14] [:A] 510 [:B] 505 [:C] 525 [:D] 515 [:ANS] D [:SOLN] $S_{40} = \frac{40}{2} [2a + 39d] = 1030$ (1)

[9]

$$\Rightarrow \qquad 8\left(\alpha\vec{p}+\beta\vec{q}+\gamma\vec{r}\right)=3\left(\vec{p}+\vec{q}+\vec{r}\right)$$

$$\Rightarrow \qquad 8\alpha = 3, 8\beta = 3, 8\gamma = 3 \Rightarrow \alpha = \frac{3}{8}, \beta = \frac{3}{8}, \gamma = \frac{3}{8}$$

$$\alpha + 2\beta + 3\gamma = \frac{3}{8} + \frac{6}{8} + \frac{15}{8} = \frac{24}{8} = 3$$

The equation of the chord, of the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$, whose mid-point is (3, 1) is : [:Q.18]

- [:A] 4x + 122y = 134
- [:B] 25x + 101y = 176
- [:C] 48x + 25y = 169
- [:D] 5x + 16y = 31

[:ANS] С

[:Q

[:SOLN] use equation of chord with given middle point $T = S_1$

$$\Rightarrow \quad \frac{3x}{25} + \frac{y}{16} - 1 = \frac{9}{25} + \frac{1}{16} - 1 \Rightarrow 48x + 25y = 144 + 25 \Rightarrow 48x + 25y = 169$$

.19] For some a, b, let $f(x) = \begin{vmatrix} a + \frac{\sin x}{x} & 1 & b \\ a & 1 + \frac{\sin x}{x} & b \\ a & 1 & b + \frac{\sin x}{x} \end{vmatrix}$, $x \neq 0$, $\lim_{x \to 0} f(x) = \lambda + \mu a + \nu b$.

Then $(\lambda + \mu + v)^2$ is equal to :

- [:A] 16
- [:B] 9
- [:C] 36
- [:D] 25

[:SOLN]
$$\lim_{x \to 0} f(x) = \begin{vmatrix} a+1 & 1 & b \\ a & 1+1 & b \\ a & 1 & b+1 \end{vmatrix}$$

a

$$= (a + 1) (2(b + 1) - b) + 1(ab - a(b + 1)) + ba = (a + 1) (b + 2) - a + ab$$

 $b + a + 2 = \lambda + \mu a + \nu b$ $= b + a + 2 = \lambda + \mu a + \nu b$ $\lambda = 2, \mu = 1, \nu = 1 \implies (\lambda + \mu + \nu)^2 = 16$

[:Q.20] Let $f : (0, \infty) \to R$ be a function which is differentiable at all points of its domain and satisfies the condition $x^2 f'(x) = 3xf(x) + 3$, with f(1) = 4. Then 2f(2) is equal to :

- [:A] 23
- [:B] 39
- [:C] 29
- [:D] 19

[:ANS] B

[:SOLN] $x^{2}f'(x) - 2x f(x) = 3$

$$\left(\frac{x^{2}f'(x) - 2xf(x)}{\left(x^{2}\right)^{2}}\right) = \frac{3}{\left(x^{2}\right)^{2}} \Rightarrow \frac{d}{dx}\left(\frac{f(x)}{x^{2}}\right) = \frac{3}{x^{4}}$$

Integrating both sides, we get

$$\frac{f(x)}{x^2} = -\frac{1}{x^3} + C$$

$$f(x) = -\frac{1}{x} + Cx^2$$
put x = 1
$$4 = -1 + C \implies C = 5$$

$$f(x) = -\frac{1}{x} + 5x^2$$
Now 2 × f(2) = 2 × $\left[-\frac{1}{2} + 5 \times 2^2\right]$ =

SECTION 2

39

[:Q.21] Number of functions f : $\{1, 2, \dots, 100\} \rightarrow \{0, 1\}$, that assign 1 to exactly one of the positive integers less than or equal to 98, is equal to _____.

[:ANS] 392

[15]

$$\lambda = 1$$

T(3, 2, 4)
QT = $\sqrt{33}$ RT = $\sqrt{29}$
(area of ΔPQR)² = $\left(\frac{1}{2}\sqrt{29}.2\sqrt{33}\right)^2$
= 957
[:Q.23] Let y = y(x) be the solution of the differential equation $2\cos x \frac{dy}{dx} = \sin 2x - 4y \sin x, x \in \left(0, \frac{\pi}{2}\right)$.
If $y\left(\frac{\pi}{3}\right) = 0$, then $y'\left(\frac{\pi}{4}\right) + y\left(\frac{\pi}{4}\right)$ is equal to ______.
[:ANS] 1
[:SOLN] $\frac{dy}{dx} + 2y \tan x = \sin x$
LF. = $e^{2\int \tan x \, dx} = \sec^2 x$
 $y \sec^2 x = \int \frac{\sin x}{\cos^2 x} \, dx$
 $= \int \tan x \sec x \, dx$
 $= \sec x + C$
 $C = -2$
 $y = \cos x - 2\cos^2 x$
 $y\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} - 1$
 $y' = -\sin x + 4\cos x \sin x$
 $y'\left(\frac{\pi}{4}\right) = -\frac{1}{\sqrt{2}} + 2$
 $y'\left(\frac{\pi}{4}\right) + y\left(\frac{\pi}{4}\right) = 1$

[16]

[:Q.24]	Let $H_1: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ and $H_2: -\frac{x^2}{A^2} + \frac{y^2}{B^2} = 1$ be two hyperbolas having length of latus rectums
	$15\sqrt{2}$ and $12\sqrt{5}$ respectively. Let their eccentricities be $e_1 = \sqrt{\frac{5}{2}}$ and e_2 respectively. If the
	product of the lengths of their transverse axes is $100\sqrt{10}$, then $25e_2^2$ is equal to
[:ANS]	55
[:SOLN]	$\frac{2b^2}{a} = 15\sqrt{2}$
	$1 + \frac{b^2}{a^2} = \frac{5}{2}$
	$a = 5\sqrt{2}$
	$b = 5\sqrt{3}$
	$\frac{2A^2}{B} = 12\sqrt{5}$
	$2a.2B = 100\sqrt{10}$
	$2.5\sqrt{2.2B} = 100\sqrt{10}$
	$\mathbf{B} = 5\sqrt{5}$
	$A = 5\sqrt{6}$
	$e_2^2 = 1 + \frac{A^2}{B^2}$
	$=1+\frac{150}{125}$
	$e_2^2 = 1 + \frac{30}{25}$
	$25e_2^2 = 55$
[:Q.25]	If $\int \frac{2x^2 + 5x + 9}{\sqrt{x^2 + x + 1}} dx = x\sqrt{x^2 + x + 1} + \alpha\sqrt{x^2 + x + 1} + \beta \log_e \left x + \frac{1}{2} + \sqrt{x^2 + x + 1} \right + C$, where C is the
	constant of integration, then α + 2 β is equal to

[17]

[:ANS] 16 [:SOLN] Put, $2x^2 + 5x + 9 = A(x^2 + x + 1) + B(2x + 1) + C$ A = 2 $B = \frac{3}{2}$ $C = \frac{11}{2}$ $2\int\sqrt{x^2 + x + 1} dx + \frac{3}{2}\int\frac{2x + 1}{\sqrt{x^2 + x + 1}} dx + \frac{11}{2}\int\frac{dx}{\sqrt{x^2 + x + 1}}$ $2\int\sqrt{\left(x + \frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} dx + 3\sqrt{x^2 + x + 1} + \frac{11}{2}\int\frac{dx}{\sqrt{\left(x + \frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2}}}$ $2\left(\frac{x + \frac{1}{2}}{2}\sqrt{x^2 + x + 1} + \frac{3}{8}\ln\left(x + \frac{1}{2} + \sqrt{x^2 + x + 1}\right)\right) + 3\sqrt{x^2 + x + 1}$ $+ \frac{11}{2}\ln\left(x + \frac{1}{2} + \sqrt{x^2 + x + 1}\right) + C$ $\alpha = \frac{7}{2}$ $\beta = \frac{25}{4}$ $\alpha + 2\beta = 16$

