

[.C] 9
[.D] 11
[:ANS] D
[:SOLN]
$$f(x) = 6 + 16\left(\frac{\cos 3x}{4}\right)$$
. Sin3x. cos6x
 $= 6 + 4 + \cos 3x \cdot \sin 3x \cdot \cos 6x$
 $= 6 + \sin 12x$ \therefore $f(x) \in [5, 7]$ $\therefore \alpha = 5, \beta = 7$
Distance $= \left|\frac{15 + 28 + 12}{5}\right| = 11$
[:Q.3] Let $\int x^2 \sin x dx = g(x) + C$, where C is the constant of integration. If
 $8\left(g\left(\frac{\pi}{2}\right) + g'\left(\frac{\pi}{2}\right)\right) = \alpha \pi^2 + \beta \pi^2 + \gamma, \alpha, \beta, \gamma \in \mathbb{Z}$, then $\alpha + \beta - \gamma$ equals:
[:A] 48
[:B] 55
[:C] 62
[:D] 47
[:ANS] B
[:SOLN] $\int x^3 \sin x dx = -x^3 \cdot \cos x + 3x^2 \sin x + 6x \cos x - 6\sin x + c$
 \therefore $g(x) = -x^3 \cos x + 3x^2 \sin x + 6x \cos x - 6\sin x + c$
 \therefore $g\left(\frac{\pi}{2}\right) = \frac{3\pi^2}{4} - 6, \quad g'\left(\frac{\pi}{2}\right) = \frac{\pi^3}{8}$
 \therefore $8\left(g\left(\frac{\pi}{2}\right) + g'\left(\frac{\pi}{2}\right)\right) = \pi^3 + 6\pi^2 - 48$
 \therefore $\alpha + \beta - \gamma = 55$
[:Q.4] The number of complex numbers z, satisfying $|z| = 1$ and $\left|\frac{z}{z} + \frac{\overline{z}}{z}\right| = 1$, is
[:A] 4
[:B] 6
[:C] 10
[:D] 8

[:ANS]

[:Q.5]

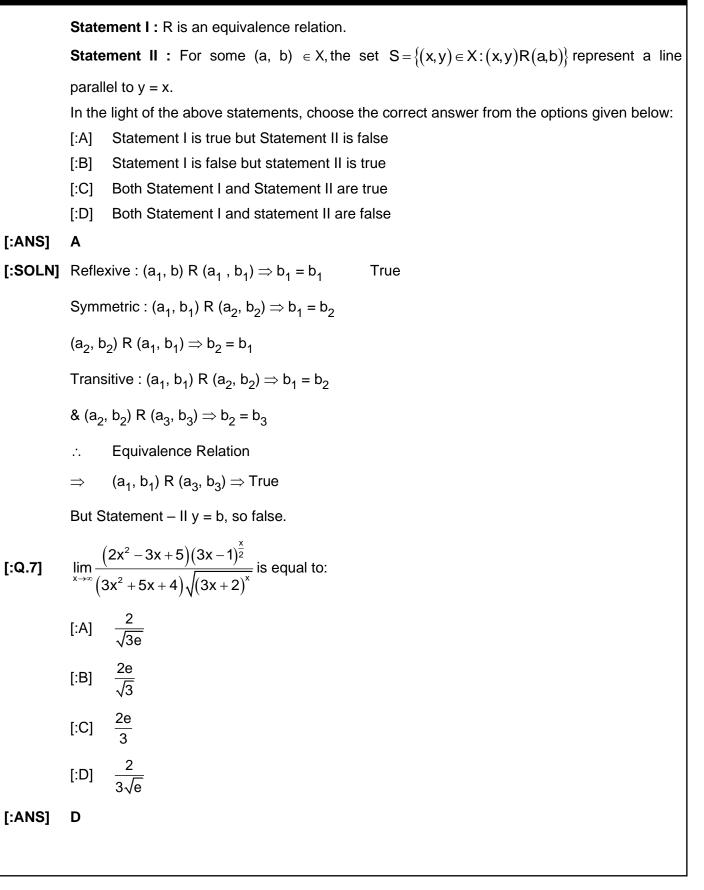
[:ANS]

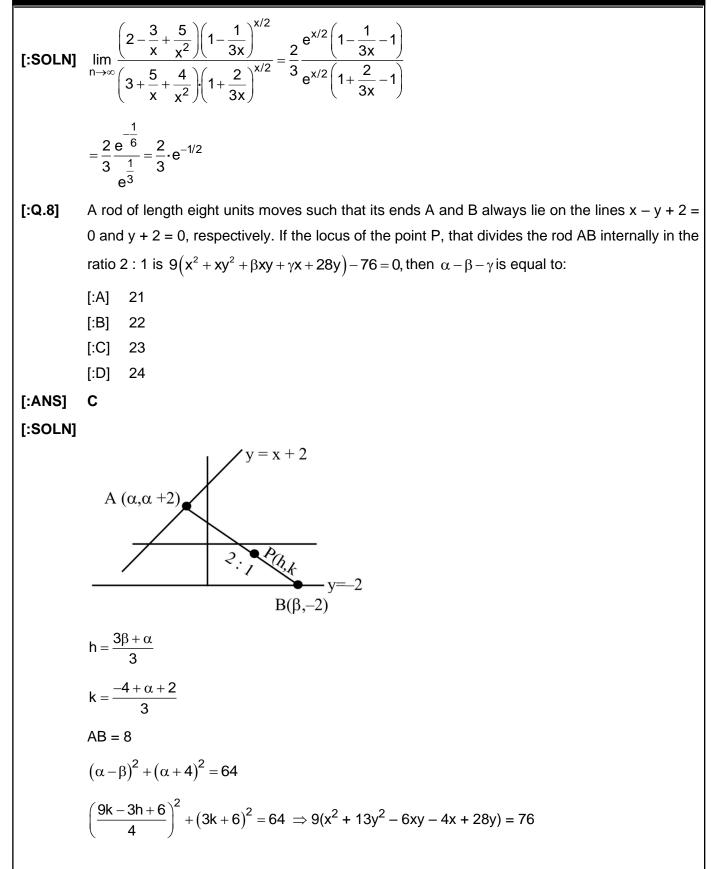
[:Q.6]

D **[:SOLN]** Put $z = e^{iQ}$ $\left(\frac{z}{\overline{z}}\right) = e^{iz\theta}$ \therefore Questions = $\left|\frac{z}{\overline{z}} + \frac{\overline{z}}{\overline{z}}\right| = 1$ $\Rightarrow |e^{iz\theta} + e^{-iz\theta}| = 1$ $\left|\cos 2\theta\right| = \frac{1}{2}$ *.*.. 8 Let the point A divide the line segment joining the points P(-1, -1, 2) and Q(5, 5, 10) internally in the ratio r : 1 (r > 0). If O is the origin and $\left(\overrightarrow{OQ},\overrightarrow{OA}\right) - \frac{1}{5}\left|\overrightarrow{OP} \times \overrightarrow{OA}\right|^2 = 10$, then the value of r is: [:A] 7 [:B] 14 [:C] 3 [:D] √7 Α [:SOLN] $A = \left(\frac{5r-1}{r+1}, \frac{5r-1}{r+1}, \frac{10r+2}{r+1}\right)$ $\overrightarrow{OQ} \cdot \overrightarrow{OA} - \frac{\left|\overrightarrow{OP} \times \overrightarrow{OA}\right|^2}{5} = 10$ ------(1) $\overrightarrow{OQ} \cdot \overrightarrow{OA} = \frac{5}{r+1} (30r+2)$ $\left|\overrightarrow{OP} \times \overrightarrow{OA}\right|^2 = \frac{r^2}{(r+1)^2} \cdot (800)$ from equation (1) $\frac{10}{r+1}(15r+1) - \frac{1}{5}\frac{(r^2 \cdot 800)}{(r+1)^2} = 10$ \therefore r = 7 Let $X = R \times R$. Define a relation R on X as: $(a_1,b_1)R(a_2,b_2) \Leftrightarrow b_1 = b_2.$

Mentors Eduserv: Parus Lok Complex, Boring Road Crossing, Patna-1 Helpline No.: 9569668800 | 7544015993/4/6/7

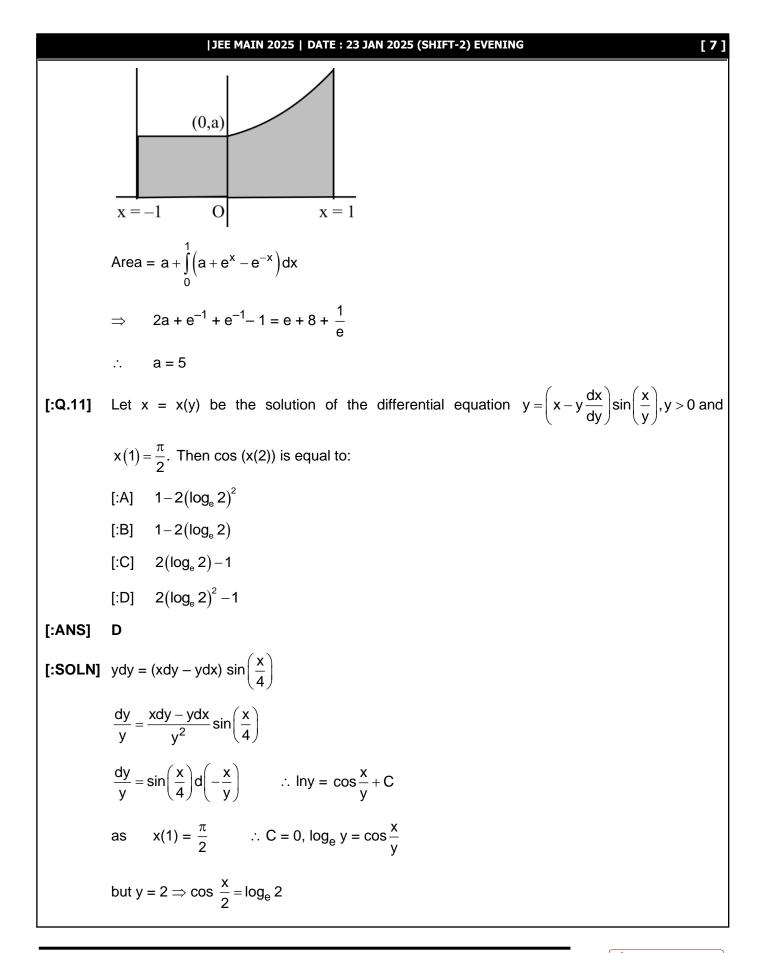
[3]

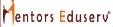




[5]

[6]	JEE MAIN 2025 DATE : 23 JAN 2025 (SHIFT-2) EVENING
	$\therefore \alpha - \beta - \gamma = 13 + 6 + 4 = 23$
[:Q.9]	The system of equations
	x + y + z = 6,
	x + 2y + 5z = 9,
	$x + 5y + \lambda z = \mu$,
	Has no solution if
	[:A] $\lambda = 17, \mu = 18$
	$[:B] \qquad \lambda \neq 17, \mu \neq 18$
	$[:C] \qquad \lambda = 15, \mu \neq 17$
	$[:D] \qquad \lambda = 17, \mu \neq 18$
[:ANS]	D
[:SOLN]	$D = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 5 \\ 1 & 5 & \lambda \end{vmatrix} = 0 \qquad \therefore \lambda = 17$
	$D_{z} = \begin{vmatrix} 1 & 1 & 6 \\ 1 & 2 & 9 \\ 1 & 5 & M \end{vmatrix} \neq 0 \qquad \therefore \mu \neq 18$
[:Q.10]	If the area of the region $\left\{ (x,y): 1 \le x \le 1, 0 \le y \le a + e^{ x } - e^{-x}, a > 0 \right\}$ is $\frac{e^2 + 8e + 1}{e}$, then the value
	of a is:
	[:A] 5
	[:B] 7
	[:C] 6
	[:D] 8
[:ANS]	Α
[:SOLN]	





[8]

	$\cos x = 2 \left(\log_e 2 \right)^2 - 1$
[:Q.12]	If the square of the shortest distance between the lines $\frac{x-2}{1} = \frac{y-1}{2} = \frac{z+3}{-3}$ and
	$\frac{x+1}{2} = \frac{y+3}{4} = \frac{z+5}{-5}$ is $\frac{m}{n}$, where m, n are coprime numbers, then m + n is equal to:
	[:A] 9
	[:B] 6
	[:C] 21
	[:D] 14
[:ANS]	Α
[:SOLN]	$\vec{a} = (2, 1, -3)$ $\vec{b} = (-1, -3, -5)$
	$\vec{b} = (-1, -3, -5)$
	$\vec{p} \times \vec{q} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & -3 \\ 2 & 4 & -5 \end{vmatrix}$
	$=2\hat{i}-\hat{j}$
	$\vec{\mathbf{b}} - \vec{\mathbf{a}} = -3\hat{\mathbf{i}} - 4\hat{\mathbf{j}} - 2\hat{\mathbf{k}}$
	$S_{d} = \frac{\left \left(\vec{b} - \vec{a} \right) \cdot \left(\vec{p} \times \vec{q} \right) \right }{\left \vec{p} \times \vec{q} \right } -$
	$=\frac{2}{\sqrt{5}}$ $(S_d)^2 = \frac{4}{5}$
	$\left(S_{d}\right)^{2} = \frac{4}{5}$
	$m = 4, n = 5 \Longrightarrow m + n = 9$
[:Q.13]	The length of the chord of the ellipse $\frac{x^2}{4} + \frac{y^2}{2} = 1$, whose mid-point is $\left(1, \frac{1}{2}\right)$, is

	[:A]	$\frac{1}{3}\sqrt{15}$
	[:B]	√ 15
	[:C]	$\frac{5}{3}\sqrt{15}$
	[:D]	$\frac{2}{3}\sqrt{15}$
[:ANS]	D	
[:SOLN]	T = \$	S ₁
	$\frac{x.1}{4}$ +	$+\frac{y_{\cdot}\frac{1}{2}}{2}=\frac{1}{4}+\frac{1}{8}$
	x +y	$=\frac{3}{2}$
	solve	e with ellipse
	PR =	$=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$
	= √2	$\overline{2} x_2 - x_1 $
	÷	$P(x_1,y_1)$ $R(x_2,y_2)$
	y ₂ =	$\frac{3}{2} - x_2$
	$y_1 =$	$\frac{3}{2} - x_1$
	y ₂ -2	$\mathbf{y}_1 = \mathbf{x}_2 - \mathbf{x}_1$
	$x^{2} + 2$	$2y^2 = 4$

$$x^{2} + 2\left(\frac{3}{2} - x\right)^{2} = 4$$

$$6x^{2} - 12x + 1 = 0$$

$$x_{1} + x_{2} = 2$$

$$x_{1}x_{2} = 1/6$$

$$|x_{2} - x_{1}| = \sqrt{(x_{2} + x_{1})^{2} - 4x_{1}x_{2}}$$

$$= \sqrt{4 - 4/6}$$

$$PR = \sqrt{2} \cdot 2 \cdot \frac{\sqrt{5}}{\sqrt{2}\sqrt{3}} = \frac{2}{3}\sqrt{15}$$
[:0.14] A spherical chocolate ball has a layer of ice-cream of uniform thickness around it. When the thickness of the ice-cream layer is 1 cm, the ice-cream melts at the rate of 81 cm³/ min and the thickness of the ice-cream layer decrease at the rate of $\frac{1}{4\pi}$ cm/min. The surface area (in cm²) of the chocolate ball (without the ice-cream layer) is:
[A] 196 \pi
[B] 256 \pi
[C] 225 \pi
[D] 128 \pi
[:SOLN]

$$v = \frac{4}{3}\pi r^{3}$$

	$\frac{\mathrm{d}v}{\mathrm{d}t} = 4\pi r^2 \frac{\mathrm{d}r}{\mathrm{d}t}$				
	$81 = 4\pi r^2 \times \frac{1}{4\pi}$				
	$r^2 = 81$				
	r = 9				
	surface area of chocolate = $4\pi(r-1)^2 = 256\pi$				
[:Q.15]	If in the expansion of $(1+x)^{p}(1-x)^{q}$, the coefficients of x and x ² are 1 and -2, respectively, then $p^{2} + q^{2}$ is equal to:				
	[:A] 20				
	[:B] 13				
	[:C] 18 [:D] 8				
[:ANS]	[.0] 0 B				
[.410]					
[:SOLN]	$(1+x)^{p}(1-x)^{q} = {\binom{p}{C_{0}} + {\binom{p}{C_{1}}x} + {\binom{p}{C_{2}}x^{2}} + \dots} {\binom{q}{C_{0}} - {\binom{q}{C_{1}}x} + {\binom{q}{C_{2}}x^{2}} + \dots}$				
	coff of $x \equiv {}^{p}C_{0} {}^{q}C_{1} - {}^{p}C_{1} {}^{q}C_{0} = 1$				
	p - q = 1				
	coff of $x^2 \equiv {}^{p}C_0 {}^{q}C_2 - {}^{p}C_1 {}^{q}C_1 + {}^{p}C_2 {}^{q}C_0 = -2$				
	$\frac{q(q-1)}{2} - pq + \frac{p(p-1)}{2} = -2$				
	$q^2 - q - 2pq + p^2 - p = -4$				
	$(p-q)^2 - (p+q) = -4$				
	p + q = 5				
	p = 3				
	q = 2				

so
$$p^2 + q^2 = 13$$

[:Q.16] Let the shortest distance from (a, 0), a > 0, to the parabola $y^2 = 4x$ be 4. Then the equation of the circle passing through the point (a, 0) and the focus of the parabola, and having its centre on the axis of the parabola is:
[:A] $x^2 + y^2 - 8x + 7 = 0$
[:B] $x^2 + y^2 - 6x + 5 = 0$
[:C] $x^2 + y^2 - 10x + 9 = 0$
[:ANS] B
[:SOLN] Normal at P
 $y + tx = 2t + t^3$
 \uparrow
(a, 0)
 $\frac{p(t^2, 2t)}{4}$
 $R(a, 0)$
 $at = 2t + t^3$
 $a = 2 + t^2$
 $R(2 + t^2, 0)$
 $PR = 4 \Rightarrow 4 + 4t^2 = 16$
 $4t^2 = 12 \Rightarrow t^2 = 3$
 $a = 5$, $R(5, 0)$
Focus (1, 0)

(1, 0) & (5, 0) will be the end points of diameter

[12]

[13]

	\Rightarrow Eq ⁿ of circle is				
	$(x-1)(x-5) + y^2 = 0$				
	$x^2 + y^2 - 6x + 5 = 0$				
[:Q.17]	The distance of the line $\frac{x-2}{2} = \frac{y-6}{3} = \frac{z-3}{4}$ from the point (1, 4, 0) along the line				
	$\frac{x}{1} = \frac{y-2}{2} = \frac{z+3}{3}$ is:				
	[:A] √15				
	[:B] √13				
	[:C] √14				
	[:D] √17				
[:ANS]	c				
[:SOLN]	Let the parallel line is				
	$\frac{x-1}{1} = \frac{y-4}{2} = \frac{z-0}{3}$				
	so their point of intersection is				
	$(\lambda + 1, 2\lambda + 4, 3\lambda) = (2t + 2, 3t + 6, 4t + 3)$				
	$\lambda = 2t + 1$				
	$2\lambda + 4 = 3t + 6 \Longrightarrow t = 0$				
	so POI is (2,6,3)				
	so distance = $\sqrt{(2-1)^2 + (6-4)^2 + (3-0)^2} = \sqrt{14}$				
[:Q.18]	Let A = $[a_{ij}]$ be a 3×3 matrix such that A $\begin{bmatrix} 0\\1\\0 \end{bmatrix} = \begin{bmatrix} 0\\0\\1 \end{bmatrix}$, A $\begin{bmatrix} 4\\1\\3 \end{bmatrix} = \begin{bmatrix} 0\\1\\0 \end{bmatrix}$ and A $\begin{bmatrix} 2\\1\\2 \end{bmatrix} = \begin{bmatrix} 1\\0\\0 \end{bmatrix}$, then a_{23}				
	equals:				
	[:A] -1				
	[:B] 1				

[:ANS]	[:C] 0 [:D] 2 A
[:SOLN]	Let A = $\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$
	$A\begin{bmatrix}0\\1\\0\end{bmatrix} = \begin{bmatrix}0\\0\\1\end{bmatrix} \Rightarrow \begin{bmatrix}a_{12}\\a_{22}\\a_{32}\end{bmatrix} = \begin{bmatrix}0\\1\\0\end{bmatrix} \Rightarrow a_{22} = 0; a_{12} = 0$ $a_{32} = 1$
	$A\begin{bmatrix} 4\\1\\3\end{bmatrix} = \begin{bmatrix} 0\\1\\0\end{bmatrix} \Rightarrow \begin{array}{c} 4a_{11} + a_{12} + 3a_{13} = 0\\ 4a_{21} + a_{22} + 3a_{23} = 1 \Longrightarrow 4a_{21} + 3a_{23} = 1\\ 4a_{31} + a_{32} + 3a_{33} = 0 \end{array}$
	$A\begin{bmatrix} 2\\1\\2\end{bmatrix} = \begin{bmatrix} 1\\0\\0\end{bmatrix} \Rightarrow \begin{array}{c} 2a_{11} + a_{12} + 2a_{13} = 1\\ \Rightarrow 2a_{21} + a_{22} + 2a_{23} = 0 \Rightarrow a_{21} + a_{23} = 0\\ 2a_{31} + a_{32} + 2a_{33} = 0 \end{array}$
	$-4a_{23} + 3a_{23} = 1 \implies a_{23} = -1$

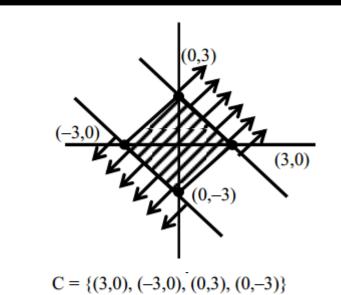
[:Q.19] A board has 16 squares as shown in the figure:

-		

Out of these 16 squares, two squares are chosen at random. The probability that they have bo side in common is:

[:A]
$$\frac{7}{10}$$

		JEE MAIN 2025 DATE : 23 JAN 2025 (SHIFT-2) EVENING [15]		
	[:B]	2 <u>3</u> 30		
	[:C]	$\frac{4}{5}$		
	[:D]	$\frac{3}{5}$		
[:ANS]	С			
[:SOLN]	Total ways for selecting any two squares = ${}^{16}C_2 = 120$			
	Tota	l ways for selecting common side squares		
	= Hori	3×4 + 3×4 zontal side vertical side = 24		
	so rec	quired probability		
	= 1-	$\frac{24}{120}$		
	$=\frac{4}{5}$			
[:Q.20]	Let A	$= \{ (x, y) \in R \times R : x + y \ge 3 \} B = \{ (x, y) \in R \times R : x + y \le 3 \}.$		
	If C =	$\{(x,y) \in A \cap B : x = 0 \text{ or } y = 0\}$, then $\sum_{(x,y)\in C} x+y $ is:		
	[:A]	12		
		24		
		18		
[.ANCI	[:D] A	15		
[:ANS] [:SOLN]	~			



 $\Sigma |\mathbf{x} + \mathbf{y}| = 12$

SECTION 2

[:Q.21] The focus of the parabola $y^2 = 4x + 16$ is the centre of the circle C of radius 5. If the values of λ , for which C passes through the point of intersection of the lines 3x - y = 0 and $x + \lambda y = 4$, are λ_1 and λ_2 , $\lambda_1 < \lambda_2$, then $12\lambda_1 + 29\lambda_2$ is equal to _____.

[:ANS] 15

[:SOLN] $y^2 = 4(x + 4)$

Equation of circle

 $(x+3)^2 + y^2 = 25$

Passes through the point of intersection of two

lines 3x - y = 0 and $x + \lambda y = 4$ which is $\left(\frac{4}{3\lambda+1},\frac{12}{3\lambda+1}\right)$, after solving with circle, we get $\lambda = -\frac{7}{6}, 1$ $12\lambda_1 + 29\lambda_2$ -14 + 29 = 15[:Q.22] The number of ways, 5 boys and 4 girls can sit in a row so that either all the boys sit together or no two boys sit together, is_____ [:ANS] 17280 A : number of ways that all boys [:SOLN] sit together = $5! \times 5!$ B : number of ways if no 2 boys sit together = $4! \times 5!$ $A \cap B = \phi$ Required no. of ways = $5! \times 5! + 4! \times 5! = 17280$ [:Q.23] The variance of the numbers 8, 21, 34, 47,, 320 is _____ [:ANS] 8788 Var(8, 21, 34, 47,, 320) [:SOLN] Var(0, 13, 26, 39,, 312) 13^2 . Var(0, 1, 2,, 24) 13^2 .Var(1, 2, 3, ..., 25)So, $\sigma^2 = 13^2 \times \left(\frac{25^2 - 1}{12}\right) = 8788$

[17]

Alternate solution

$$8 + (n-1)13 = 320$$

$$13n = 325$$

$$n = 25$$
no. of terms = 25
mean = $\frac{\sum x_1}{n} = \frac{8 + 21 + ... + 320}{25} = \frac{25}{2} \frac{(8 + 320)}{25}$
variance $\sigma^2 = \frac{\sum x_1^2}{n} - (mean)^2$

$$= \frac{8^2 + 21^2 + ... + 320^2}{13} - (164)^2$$

$$= 8788$$
[:0.24] The roots of the quadratic equation $3x^2 - px + q = 0$ are 10^{th} and 11^{th} terms of an arithmetic progression with common difference $\frac{3}{2}$. If the sum of the first 11 terms of this arithmetic progression is 88, then $q - 2p$ is equal to ______.
[:ANS] 474
[:SOLN] $S_{11} = \frac{11}{2} (2a + 10d) = 88$
 $a + 5d = 8$
 $a = 8 - 5 \times \frac{3}{2} = \frac{1}{2}$
Roots are
 $T_{10} = a + 9d = \frac{1}{2} + 9 \times \frac{3}{2} = 14$
 $T_{11} = a + 10d = \frac{1}{2} + 10 \times \frac{3}{2} = \frac{31}{2}$

	$\frac{p}{3} = T_{10} + T_{11} = 14 + \frac{31}{2} = \frac{59}{2}$	
	$p = \frac{177}{2}$	
	$\frac{q}{3} = T_{10} \times T_{11} = 7 \times 31 = 217$	
	q = 651	
	q – 2p	
	= 651 - 177	
	= 474	
[:Q.25]	Let α,β be the roots of the equation $x^2 - ax - b = 0$ with $Im(\alpha) < Im(\beta)$. Let $P_n = \alpha^n - \beta^n$. If	
	$P_{_{3}} = -5\sqrt{7}i, P_{_{4}} = -3\sqrt{7}i, P_{_{5}} = 11\sqrt{7}i \text{ and } P_{_{6}} = 45\sqrt{7}i, \text{then } \left \alpha^{_{4}} + \beta^{_{4}}\right \text{is equal to } _____\$	
[:ANS]	31	
[:SOLN]	$\alpha + \beta = a \qquad \alpha \beta = -b$	
	$\mathbf{P}_6 = \mathbf{a}\mathbf{P}_5 + \mathbf{b}\mathbf{P}_4$	
	$45\sqrt{7}i = a \times 11\sqrt{7}i + b\left(-3\sqrt{7}\right)i$	
	45 = 11a - 3b(1)	
	and	
	$\mathbf{P}_5 = \mathbf{a}\mathbf{P}_4 + \mathbf{b}\mathbf{P}_3$	
	$11\sqrt{7}i = a\left(-3\sqrt{7}i\right) + b\left(-5\sqrt{7}i\right)$	
	11 = -3a - 5b(2)	
	a = 3, b = -4	
	$\left \alpha^{4}+\beta^{4}\right =\sqrt{\left(\alpha^{4}-\beta^{4}\right)^{2}+4\alpha^{4}\beta^{4}}$	
	$=\sqrt{-63+4.4^4}$	

 $=\sqrt{-63+1024}=\sqrt{961}=31$

