

	JEE MAIN 2024 D/	ATE : DATE : 23 JAN 2025 (SHI	FT-2) EVENING [3]					
[:Q.53]	Match List – I with List – II.							
	List – I		List – II					
	(A) Bronze	(I)	Cu, Ni					
	(B) Brass	(II)	Fe, Cr, Ni, C					
	(C) UK silver coin	(111)	Cu, Zn					
	(D) Stainless steel	(IV)	Cu, Sn					
	Choose the correct answer	form the options given be	elow:					
	[A] (A)-(III), (B)-(I), (C)-(IV), (D)-(II) [B]	(A)-(IV), (B)-(III), (C)-(I), (D)-(II)					
	[C] (A)-(IV), (B)-(II), (C)-(II	I), (D)-(I) [D]	(A)-(III), (B)-(IV), (C)-(II), (D)-(I)					
[:Ans]	В							
[:SoLN]	(A) Bronze –(iii) Cu, SN							
	(B) Brass-(IV) Cu, Zn							
	(C) UK silver coin –(i) Cu, N	i						
	(D) Stainless steel – (ii) Fe,	Cr, Ni, C						
[:Q.54]	Given below are two statem	ents:						
	Consider the following react	ion						
	O II	OH OH						
	$R \rightarrow R + H_{2O} \stackrel{K}{\Longrightarrow}$							
	11 1120 1	K K O						
	Statement I : In the case	of formaldehyde (H	H) , K is about 2280, due to small					
	subtituents, hydration is faster.							
	Statement II is in the approx of trichlars control debudy $\left(\frac{\ddot{C}}{\sqrt{C}} \right)$ K is chart 2000, the tr							
	– I effect – Cl.							
	In the light of the above statements, choose the correct answer from the options given							
	below:							
	[A] Statement I is false bu	t Statement II is true						
	B] Statement I is true but	Statement II is false						
	[C] Both Statement I and Statement II are true							
	[D] Both Statement I and Statement II are false							
[:Ans]	В							
[SoLN]	Statement (I) is true but st	atemnt (II) is false						

[4]	JE	E MAIN 2024 DATE : 23 JAN	2025 (SHIFT-2) EVENING				
[:Q.55]	Given below are the atomic numbers of some group 14 elements. The atomic number of the element with lowest melting point is:							
	[A] 82	[B] 6	[C]	50	[D]	14		
[:Ans]	C							
[SOLN]	Group -14.							
	M.P.							
	C > Si > Ge > Pb > Sn							
	$\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$							
	6 14 32 82 50		_		_			
[Q.56]	Consider a binary solu fractions of component	ition of two volatile liquic t 1 in liquid and vapour p	l com hase,	oonents 1 and 2 x respectively. The	₁ and slope	y ₁ are the mole and intercept of		
	the linear plot of $\frac{1}{x_1}$ vs	$\frac{1}{y_1}$ are given respectively	as:					
	$[A] \frac{P_2^0}{P_1^0}, \frac{P_2^0 - P_1^0}{P_2^0}$	[B] $\frac{P_1^0}{P_2^0}, \frac{P_1^0 - P_2^0}{P_2^0}$	[C]	$\frac{P_2^0}{P_1^0}, \frac{P_1^0 - P_2^0}{P_2^0}$	[D]	$\frac{P_1^0}{P_2^0}, \frac{P_2^0 - P_1^0}{P_2^0}$		
[:Ans]	В							
[:SoLN]	$P_1^0 X_1 = \left(P_1^0 X_1 + P_2^0 X_2 \right) y_1^0 $	/1						
	$\frac{1}{y_1} = 1 + \frac{P_2^0}{P_1^0} \frac{X_2}{X_1}$							
	$\frac{1}{y_1} = 1 + \frac{P_2^0}{P_1^0} \frac{\left(1 - X_1\right)}{X_1}$							
	$\frac{1}{y_1} = \left(1 - \frac{P_2^0}{P_1^0}\right) + \frac{P_2^0}{P_1^0 X_1}$							
	$\frac{P_2^0}{P_1^0 x_1} = \frac{1}{y_1} - \left(\frac{P_1^0 - P_2^0}{P_1^0}\right)$							
	$\frac{1}{X_1} = \frac{1}{y} \times \frac{P_1^0}{P_2^0} - \left(\frac{P_1^0 - P_2^0}{P_1^0}\right)$	$= \frac{P_1^0}{P_2^0}$						
	Slope = $\frac{P_1^0}{P_2^0}$							

[6]	JEE MAIN 2024 DATE : 23 JA	IN 2025 (S	(SHIFT-2) EVENING
[·Anc]	[C] PbS,PbSO ₄ ,PbCrO ₄	[D]	$PbCl_{2}, Pb(SO_{4})_{2}, PbCrO_{4}$
	C		
[:50LN]	(1) 1		
	(1) Am	nonium	
	$\begin{array}{c} PbS \longrightarrow Pb(NO_3)_2 \longrightarrow PbSO_4 \\ \hline B \end{array} (2) Ac \end{array}$	etic acid	
	(3) K ₂	CrO ₄	
		¥ PbCı	rO.
		Vallar	
		renow	v ppr
[0 50]	When a non-volatile solute is added to the		at the vaneur prossure of the solvent
[@.55]	decreases by 10 mm of Hq. The more fraction	n of the	solution is 0.2. What would be the mole
	fraction of the solvent if decrease in vapour pr	ressure i	is 20 mm of Ha?
	[A] 0.8 [B] 0.6	[C]	0.4 [D] 0.2
[·Ans]	B	[0]	
[.,]	 _AP		
[:SOLN]	$\frac{\Delta R}{P^0}$ = Relative lowering of vapour press.		
	$\frac{\Delta P}{P^0} = X_B = 0.2$		
	$\frac{10}{10} = 0.2$		
	P ⁰		
	$\frac{20}{20} = x_{solute}$		
	Þ		
	$\frac{x}{0.2} = \frac{20}{10}$		
	x = 0.4		
	$x_{solvent} = 0.6$		
[Q.60]	Standard electrode potentials for a few half ce	ells are n	mentioned below:
	${E^{\circ}}_{Cu^{2^{+}}/Cu}=0.34V, {E^{\circ}}_{Zn^{2^{+}}/Zn}=-0.76V$		
	$E^{\circ}_{~~Ag^{+}/Ag}=0.80V,~E^{\circ}_{~~Mg^{2^{+}}/Mg}=-2.37V$		
	Which one of the following cells gives the mos	st negati	tive value of ΔG° ?

JEE MAIN 2024 DATE : DATE : 23 JAN 2025 (SHIFT-2) EVENING [7								
	[A]	Ag A	.g⁺ (1N	M) Mg ²⁺ (1M) M	lg	[B]	$Zn \left \left. Zn^{2+} \left(1M \right) \right \right Ag^{+} \left(1M \right) \right Ag$	
	[C]	Cu C	u ²⁺ (1	M) Ag^{+} (1 M) A	g	[D]	$Zn Zn^{^{2+}}\left(1\!M\right) Mg^{^{2+}}\left(1\!M\right) Mg$	
[:Ans]	в							
[:SoLN]	Zn Z	2. n ⁺²	Ag+	Ag will give max	ximum +ve			
	Ecell							
	∴ Mir	nimum	n ∆G					
[Q.61]	The o	(– He	lix an	d β – Pleated sł	neet structures o	f pro	tein are associated with its:	
	[A]	tertiar	y stru	icture		[B]	secondary structure	
	[C]	quate	rnary	structure		[D]	primary structure	
[:Ans]	В							
[:SOLN]	Seco	ndary	, str	ucture				
10 001			· _					
[Q.62]	pH of	pH of water is 7 at 25°C. if water is heated to 80°C., it's pH will:						
	[A] H ⁺ concentration increases, OH ⁻ concentration decreases							
	[B] Decrease							
[·Ane]	[D] Remains the same							
	PH at	80°C	will	decreases				
[Q.63]	The effect of temperature on spontaneity of reaction are represented as:							
		ΔH	∆S	Temperature	Spontaneity			
	(A)	+	_	any T	Non spontaned	ous		
	(B)	+	+	low T	Spontaneous			
	(C)	_	_	low T	Non spontaneo	ous		
	(D)	_	+	any T	Spontaneous			
	The in	ncorre	ct coi	mbinations are:				
	[A]	(B) ar	id (D)	only		[B]	(A) and (C) only	
	[C]	(B) an	id (C)	only		[D]	(A) and (D) only	
[:Ans]	B& C							
	ΔH	ł		ΔS		Т	Spontaneity	
[:SOLN]	(A) +			-		any	T Non spon	

$$X_2Y(g) \Longrightarrow X_2(g) + \frac{1}{2}Y_2(g)$$

The equation representing correct relationship between the degree of dissociation (x) of $X_2Y(g)$ with its equilibrium constant Kp is _____

Assume x to be very small.

[A]
$$x = \sqrt[3]{\frac{Kp}{2p}}$$
 [B] $x = \sqrt[3]{\frac{Kp}{p}}$ [C] $x = \sqrt[3]{\frac{2Kp^2}{p}}$ [D] $x = \sqrt[3]{\frac{2Kp}{p}}$

[:Ans]

С

[:SOLN]
$$X_2Y(g) \Longrightarrow X_2(g) + \frac{1}{2}Y_2(g)$$

Total mol =
$$1 - x + x + \frac{x}{2} = \left(1 + \frac{x}{2}\right)$$

$$\therefore K_{p} = \frac{\left(\frac{x}{1+x/2}\right) P \times \left(\frac{x/2}{1+x/2}\right)^{1/2} \times p^{1/2}}{\left(\frac{1-x}{1+\frac{x}{2}}\right) \times p}$$
$$\therefore K_{p} = \frac{x^{3/2} P^{1/2}}{2^{1/2}}$$

$$x^{3/2} = \left(\frac{K_p \times 2^{1/2}}{P^{1/2}}\right)$$
$$x = \sqrt[3]{\frac{2K_p^2}{P}}$$

[:Q.67] Given below are two statements:

Statement I : For a given shell, the total number of allowed orbitals is given by n^2 .

Statement II : For any subshell, the spatial orientation of the orbitals is given by - / to + / values including zero.

In the light of the above statements, choose the **correct** answer from the options given below:

[A] Statement I is true but Statement II is false

[B] Both Statement I and Statement II are false

JEE MAIN 2024 DATE : DATE : 23 JAN 2025 (SHIFT-2) EVENING [11]								
	[C]	$K_2Cr(OH)_6$ and Cr_2O_3	[D]	K_2CrO_4 and Cr_2O_3				
[:Ans]	Α							
	$K_{2}C_{1}O_{2} \xrightarrow{KOH} K C_{1}O \xrightarrow{H_{2}SO_{4}} K C_{1}O \xrightarrow{+K_{2}SO_{4}} K$							
		$\begin{bmatrix} A \end{bmatrix} \begin{bmatrix} A \end{bmatrix} \begin{bmatrix} B \end{bmatrix}$	60					
[:Q.70]	Identify the coordination complexes in which the central metal ion has d ⁴ configuration.							
	(A)	$[FeO_4]^{2-}$ (B) $[Mn(CN)_6]^{3-}$	(C)	$\left[Fe(CN)_{6}\right]^{3-}$				
	(D)	$\operatorname{Cr}_{2} \begin{pmatrix} O \\ \parallel \\ O - C - Me \end{pmatrix}_{4} (H_{2}O)_{2}$	(E)	$\left[NiF_{6}\right]^{2^{-}}$				
	Cho	ose the correct answer from the options giv	en be	elow:				
	[A]	(B), (C) and (D) only	[B]	(B) and (D) only				
	[C]	(C) and (E) only	[D]	(A), (B) and (E) only				
[:Ans]	В							
[:SOLN]	A. [$FeO_4]^{2-} - Fe^{6+} - 3d^2$						
	B. $\left[Mn(CN)_{6} \right]^{3-} - Mn^{3+} - 3d^{4}$							
	C. $\left[Fe(CN)_{6} \right]^{3-} - Fe^{3+} - 3d^{5}$							
	$\mathbf{D} \cdot \left[\mathbf{Cr}_{2} \left(\mathbf{O} - \overset{\mathbf{O}}{\mathbf{C}} - \mathbf{Me} \right)_{4} \left(\mathbf{H}_{2} \mathbf{O} \right)_{2} \right] - \mathbf{Cr}^{2+} - 3d^{4}$							
	E. $[NiF_6]^{2-} - Ni^{4+} - 3d^6$							
		Numerical						
[:Q.71]	0.01 mole of an organic compound (X) containing 10% hydrogen, on complete combustion							
	produced 0.9 g H ₂ O. Molar mass of (X) is g mol ⁻¹ .							
[:Ans]	100	g/ml						
[SOLN]	0.01	mol						
	Let	molar mass = x g/mol						
	$\therefore \frac{0}{0}$.01 × xg .9 gH2O						
1		- 0 2 -						

|JEE MAIN 2024 | DATE : 23 JAN 2025 (SHIFT-2) EVENING

 $\therefore \frac{0.01 \times 100}{0.01 \times x} \times 100 = 10$ X = 100 g/mol $n_{H_2O} = \frac{0.9}{18} mol$ $n_{H} = \frac{0.9}{9} mol$ $n_{H} = 0.1 \text{ mol}$ $W_{H} = 0.1g$ [:Q.72] When 81.0 g of aluminum is allowed to react with 128.0 g of oxygen gas, the mass of alumnium oxide produced in grams is _____. (Nearest integer) Given : Molar mass of Al is 27.0 g mol⁻¹. Molar mass of O is 16.0 g mol⁻¹. [:Ans] 153g [:SOLN] $4AI + 3O_2 \rightarrow 2AI_2O_3$ $n_{AI} = \frac{81}{27} = 3 \text{ mol}$ $n_{O_2} = \frac{128}{32} = 4 \text{ mol}$ Limiting reagent = AI ∴ n_{Al₂O₃ = 1.5 mol} $w_{Al_2O_3} = 108 \times 1.5 \text{ mol}$

[:Q.73] The bond dissociation enthalpy of $X_2 \Delta H_{bond}$ calculated from the given data is _____

