	Mentors Eduserv [®]
	JEE MAIN 2025 DATE : 23 JAN 2025 (SHIFT-1) MORNING CHEMISTRY
	SECTION 1
[:Q.51]	Given below are two statements:
	Statement I: In Lassaigne's test, the covalent organic molecules are transformed into ionic
	compounds.
	Statement II: The sodium fusion extract of an organic compound having N and S gives prussian blue colour with FeSO4 and Na4[Fe(CN)6]
	In the light of the above statements, choose the correct answer from the options given below
	[:A] Statement I is false but Statement II is true
	[:B] Statement I is true but Statement II is false
	[:C] Both Statement I and Statement II are true
	[:D] Both Statement I and Statement II are false
[:ANS]	C
[:Q.52]	The correct set of ions (aqueous solution) with same colour from the following is:
	[:A] Zn^{2+}, V^{3+}, Fe^{3+}
	[:B] V^{2+}, Cr^{3+}, Mn^{3+}
	[:C] Ti^{4+}, V^{4+}, Mn^{2+}
	[:D] Se^{3+} , Ti^{3+} , Cr^{2+}
[:ANS]	В
[:SOLN]	Zn ²⁺ Ti ⁴⁺ -colourless
	v ²⁺ Mn ³⁺ Cr ³⁺ -violet
	v ⁴⁺ Cr ²⁺ -Blue
	Mn ²⁺ – Light pink
[:Q.53]	Match the List I with List II

|JEE MAIN 2025 | DATE : 23 JAN 2025 (SHIFT-1) MORNING

(Classification	LIST-I lassification of molecules based on octet rule)		LIST-II (Example)	
Α.	Molecules obeying octet rule	I.	NO, NO ₂	
B.	Molecules with incomplete octet	П.	BCl ₃ , AlCl ₃	
C.	Molecules with incomplete octet with odd electron	III.	H ₂ SO ₄ , PCl ₅	
D.	Molecules with expanded octet	IV.	CC1 ₄ , CO ₂	

Choose the correct anwer from the options given below:

[:A] A-II, B-IV, C-III, D-I

- [:B] A-IV, B-I, C-III, D-II
- [:C] A-IV, B-II, C-I, D-III
- [:D] A-III, B-II, C-I, D-IV

[:ANS]

С

[:SOLN] A. Molecule obey octet rule - CCl₄, CO₂ - (IV)

- B. Molecules with incomplete octet-BCl₃, AICl₃(ii)
- C. Molecule with incomplete octet and odd e- NO , NO2 .(i)
- **D.** Molecules with experted octet- H_2SO_4 , PCI_5(iii)

[:Q.54] The correct stability order of the following species /molecules is:

[4]	JEE MAIN 2025 DATE : 23 JAN 2025 (SHIFT-1) MORNING						
[·ANS]	[. ⁰] 4						
[.0.57]	The element that does not belong to the same period of the remaining elements (modern						
[.0.07]	periodic table) is:						
	[:A] Iridium						
	[:B] Platinum						
	[:C] Osmium						
	[:D] Palladium						
[:ANS]	D						
 [:SOLN]	Ir,Pt,OS Pd						
	P.N6 $P.N-5$						
[:Q.58]	The incorrect statement among the following is						
	[:A]. SO ₂ can act as an oxidizing agent, but not as a reducing agent.						
	[:B]. NO ₂ can dimerise easily.						
	[:C] PF_3 exists but NF_5 does not.						
	[:D] PH_3 shows lower proton affinity than NH_3 .						
[:ANS]	Α						
[:SOLN]	(a) SO ₂ as act as both O.A as well as R.A						
	(b) $2NO_2 \rightarrow N_2O_4$						
	(c) PF_3 exist- NF_5 not exist due to absence of d-orbit						
	(d) proton affinity : $NH_3 > PH_3$						
	OR						
	An \rightarrow SO ₂ \rightarrow Has Sulphur in + 4 oxidation state,						
	So it can act both as oxidicing as well as Reducing Agent						
[:Q.59]	$CrCl_3.xNH_3$ can exist as a complex. 0.1 molal aqueous solution of this complex shows a						
	depression in freezing point of 0.558°C. Assuming 100% ionisation of this complex and coordination number of Cr is 6, the complex will be (Given $K_f = 1.86 \text{ K kg mol}^{-1}$)						
	$[Cr(NH_3)_3Cl_3]$						
	[Cr(NH ₂) ₄ Cl ₂] Cl						
	[:B]						

| JEE MAIN 2024 | DATE : DATE : 01 FEB 2024 (SHIFT-1) MORNING [5] [Cr(NH₃)₆] Cl₃ [:C] [Cr(NH₃)₅Cl] Cl₂ [:D] [:ANS] D [:SoLN] $CrCl_3.XNH_3(0.1M)$ $\Delta T_f = 0.558^{\circ}C$ C.N – Six $K_{f} = 1.86 k g m o l^{-1}$ $0.558 = 1.86 \times 0.1 \times i \times m$ | = 3 $\left[Co(NH_3)_5 CI \right] CI_2$ [:Q.60] Given below are two statements: Statement I: Fructose does not contain an aldehydic group but still reduces Tollen's reagent Statement II: In the presence of base, fructose undergoes rearrangement to give glucose. In the light of the above statements, choose the correct answer from the options given below [:A] Both Statement I and Statement II are true Statement I is false but Statement II is true [:B] Both Statement I and Statement II are false [:C] [:D] Statement I is true but Statement II is false [:ANS] С [:Soln] Both statement (i) and Statement (ii) are true [:Q.61] Which of the following happens when NH₄OH is added gradually to the solution containing 1 M A²⁺ and 1 M B³⁺ ions? Given: $K_{sp}[A(OH)_2] = 9 \times 10^{-10}$ and $K_{sp}[B(OH)_3] = 27 \times 10^{-18}$ at 298 K. [:A] A(OH)₂ and B(OH)₃ will precipitate together [:B] B(OH)₃ will precipitate before A(OH)₂ [:C] Both A(OH)₂ and B(OH)₃ do not show precipitation with NH₄OH [:D] A(OH)₂ will precipitate before B(OH)₃ [:ANS] Α [:SOLN] 1 M A²⁺ and 1 M B³⁺

Requirement of OH^- by $\left[A(OH)_2\right]$ $A(OH)_2 \rightarrow A^{2+} + 2OH^ 9 \times 10^{-10} = (1) \times [OH]^2$ $\left[OH^-\right] = 3 \times [OH]^2$ Requirement of OH^- by $B(OH)_3$ $B(OH)_3 \rightarrow B^{3+} + 3OH^ 27 \times 10^{-18} = 1 \times \left[OH^-\right]^3$ $\left[OH^-\right] = 3 \times 10^{-6}$ $\therefore B(OH)_3$ precipitates first

[:Q.62] The d-electronic configuration of an octahedral Co(II) complex having magnetic moment of 3.95 BM is:

[:A]
$$t_{2g}^{5} e_{g}^{2}$$

[:B] $e^{4} t_{2}^{3}$
[:C] $t_{2g}^{3} e_{g}^{0}$
[:C] $t_{2g}^{6} e_{g}^{1}$
[:D] A

 $\label{eq:soln} \hbox{[:SOLN]} \quad Co(II) - 3d^7 \, 4 - t 2g^5 \, eg^2$

[:ANS]

$$\mu_{s} = 3.95 \text{ B.M}$$

[:Q.63] Which among the following react with Hinsberg's reagent?

|JEE MAIN 2024 | DATE : DATE : 01 FEB 2024 (SHIFT-1) MORNING

Mentors Eduserv[®]

[7]

$$\frac{1}{\lambda_{1}} = 10^{7} \times t^{2} \left(\frac{1}{9}\right)$$

$$\therefore \lambda_{1} = 900 \text{ nm}$$
[:Q.67] $FeO_{4}^{2-} \xrightarrow{+2.0^{\vee}} Fe^{3+} \xrightarrow{-0.8^{\vee}} Fe^{2+} \xrightarrow{-0.5^{\vee}} Fe^{0}$
In the above diagram, the standard electrode potential are given in volts (over the arrow).
The value of $E_{FO_{4}^{0}/Fe^{3+}}^{0}$ is
 FeO_{4}^{2-}/Fe^{3+} [:A] 2.1V
[:B] 1.4 V
[:C] 1.2 V
[:D] 1.7 V
[:ANS] D
[:SOLN] $FeO_{4}^{2-} \xrightarrow{(-2.0^{\vee})} Fe^{3-} \xrightarrow{(-0.5^{\vee})} Fe^{-2} \xrightarrow{(-0.5^{\vee})} Fe$
 $3e^{-} + FeO_{4}^{2-} \xrightarrow{-2.6^{\vee}} AG = -2 \times F \times 3$
 $\xrightarrow{-2.6^{\vee}} FeO_{4}^{2-} \xrightarrow{-2.6^{\vee}} AG = -2 \times F \times 3$
 $\xrightarrow{-2.6^{\vee}} FeO_{4}^{2-} \xrightarrow{-2.6^{\vee}} AG = -1 \times F \times 0.8$
 $FeO_{4}^{2-} + 4e^{-} \xrightarrow{-2.6^{\vee}} AG = -4 \times F \times E$
 $\therefore E = \left(\frac{-6.0.8}{-4}\right)$
 $= \frac{-6.4}{-4} = 1.7 V$
[:Q.68] The major product of the following reaction is:
 $CH_{3}CH_{2}CH = O \xrightarrow{-2.6^{\vee}} OH \\ CH_{3}-C \xrightarrow{-C(H_{2}^{-} OH \\ CH_{2}^{-} OH}}$
 $(A]$

| JEE MAIN 2025 | DATE : 23 JAN 2025 (SHIFT-1) MORNING

∴ Total CO₂ initially = $1.66 \times 10^{-3} + 2.8 \times 10^{-3}$ = 4.46×10^{-3} mol ∴ W_{CO2} = 196.24 mg

[:Q.70] Match the list I with list II

LIST-I Name reaction		LIST-II Product obtainable	
Α.	Swarts reaction	L	Ethyl benzene
Β.	Sandmeyer's reaction	П.	Ethyl iodide
C.	Wurtz Fittig reaction	III.	Cyanobenzene
D.	Finkelstein reaction	IV.	Ethyl fluoride

Choose the correct answer from the options given below:

- [:A] A-IV, B-I, C-III, D-II
- [:B] A-II, B-I, C-III, D-IV
- [:C] A-II, B-III, C-I, D-IV
- [:D] A-IV, B-III, C-I, D-II

[:ANS] D

[:SOLN]

Swart r × n \rightarrow (iv) Ethyl Fluoride Sandmeri's r × n \rightarrow (iii) Cyanoberzeno Wurtez Fittig r × n \rightarrow Ethyl benzeno Fenkelsteen r × n \rightarrow Elhyl lodide

Numerical

Consider the following sequence of reactions to produce major product (A)

| JEE MAIN 2024 | DATE : DATE : 01 FEB 2024 (SHIFT-1) MORNING [13] [:Q.74] If 1 mM solution of ethylamine produces pH = 9, then the ionization constant (K_b) of ethylamine is 10^{-x}. The value of x is _____ (nearest integer). [The degree of ionization of ethylamine can be neglected with respect to unity.] [:Ans] 7 [:SOLN] 1nM = 10⁻³ mol l¹ CH₃CH₂NH₂ PH = ? $K_{b}=?$ $\alpha \ll 1 \rightarrow \text{Given}$ ∴ POH = 5 $\therefore |OH^{-}| = 10^{-5}$ $10^{-5} = \sqrt{C \times K_6}$ $(10^{-5})^2 = 10^{-3} \times K_b$ $K_{\rm b} = 10^{-7}$ X = 7 [:Q.75] For the thermal decomposition of $N_2O_5(g)$ at constant volume, the following table can be formed, for the reaction mentioned below. $2N_2O_5(g) \rightarrow 2N_2O_4(g) + O_2(g)$ Time's Sr. No. Total pressure (atm) 1 0 0.6 2 'x' 100 $x = ___ \times 10^{-3}$ atm [nearest integer] Given : Rate constant for the reaction is $4.606 \times 10^{-2} \text{ s}^{-1}$. [:Ans] 900 [:SOLN] $2N_2O_5 Ig \rightarrow 2N_2O_4 + O_2(g)$ t=0s amol 0 0 Z 7 t=t a-z z ∴ a ∝ 0.6

| JEE MAIN 2025 | DATE : 23 JAN 2025 (SHIFT-1) MORNING

$$a + \frac{z}{z} \propto x$$

$$\frac{z}{z} \propto (x - 0.6)$$

$$z \propto 2(x - 0.6)$$

$$\ln \frac{a}{a - z} = Kt$$

$$\ln \frac{0.6}{0.6 - (2x - 1.2)} = 4.606 \times 10^{-2} \times 100$$

$$2.303 \log \frac{0.6}{1.8 - 2x} = 4.606$$

$$\frac{0.6}{1.8 - 2x} = 100$$

$$200x = 180 - 0.6$$

$$x = \left(\frac{179.4}{200}\right) = 0.897 \text{ atm}$$

$$= 897 \times 10^{-3}$$
 atm

