	Mentors Eduserv [®]
	JEE MAIN 2025 DATE : 22 JAN 2025 (SHIFT-2) EVENING MATHEMATICS SECTION 1
[:Q.1]	For a 3×3 matrix M, let trace (M) denote the sum of all the diagonal elements of M. Let A be a
	3×3 matrix such that $ A = \frac{1}{2}$ and trace (A) = 3. If B = adj (adj(2A)), then the value of $ B $ + trace
	(B) equals:
	[:A] 174
	[:B] 280
	[:C] 132
F. A N(0)	[:D] 56
[:AN5]	В
[:SOLN]	$ A = \frac{1}{2}$, trace(A) = 3, B = adj(adj(2A)) = $ 2A ^{n-2}(2A)$
	$n = 3, B = 2A (2A) = 2^3 A (2A) = 8A$
	$ \mathbf{B} = 8\mathbf{A} = 8^3 \mathbf{A} = 2^8 = 256$
	trace(B) = 8 trace(A) = 24
	B + trace(B) = 280
[:Q.2]	Let α_{θ} and β_{θ} be the distinct roots of $2x^2 + (\cos \theta)x - 1 = 0, \theta \in (0, 2\pi)$. If m and M are the
	minimum and the maximum values of $\alpha_{\theta}^4 + \beta_{\theta}^4$, then 16(M + m) equals:
	[:A] 17
	[:B] 27
	[:C] 25
	[:D] 24
[:ANS]	c
[:SOLN]	$(\alpha^2 + \beta^2)^2 - 2 \alpha^2 \beta^2$
	$[(\alpha + \beta)^2 - 2\alpha\beta]^2 - 2(\alpha\beta)^2$

	$\left[\frac{\cos^2\theta}{4}+1\right]^2-2.\frac{1}{4}$
	$\left(\frac{\cos^2\theta}{4}+1\right)^2-\frac{1}{2}$
	$M = \frac{25}{16} - \frac{1}{2} = \frac{17}{16}$
	$m = \frac{1}{2}, 16(M + m) = 25$
[:Q.3]	If the system of linear equations:
	x + y + 2z = 6,
	2x + 3y + az = a + 1,
	-x - 3y + bz = 2b,
	where a, $b \in \mathbb{R}$, has infinitely many solutions, then 7a + 3b is equal to:
	[:A] 12
	[:B] 9
	[:C] 22
	[:D] 16
[:ANS]	D
[:SOLN]	$\Delta = \begin{vmatrix} 1 & 1 & 2 \\ 2 & 3 & a \\ -1 & -3 & b \end{vmatrix} = 0$
	$\Rightarrow 2a + b - 6 = 0 \qquad \dots \dots \dots (1)$
	$\Delta_1 = \begin{vmatrix} 1 & 1 & 6 \\ 2 & 3 & a+1 \\ -1 & -3 & 2b \end{vmatrix} = 0$
	$\Rightarrow a + b - 8 = 0 \qquad \dots \dots (2)$
	Solving $(1) + (2)$
	a = -2, b = 10
	\Rightarrow 7a + 3b = 16

[:Q.4]	Let	$\alpha,\beta,\gamma\text{and}~\delta\text{be}$ the coefficient of $x^7,x^5,x^3\text{and}~x$ respectively in the expansion of
	(x +	$\sqrt{x^3-1}$) ⁵ + $\left(x-\sqrt{x^3-1}\right)^5$, x > 1. If u and v satisfy the equations
	αu+	$-\beta v = 18,$
	γu+	$\delta v = 20,$
	The	n u + v equals:
	[:A]	4
	[:B]	5
	[:C]	3
	[:D]	8
[:ANS]	В	
[:SOLN]	(x +	$\sqrt{x^{3}-1}$) ⁵ + $\left(x-\sqrt{x^{3}-1}\right)^{5}$
	= 2 {	$\sum_{1}^{5}C_{0}x^{5}+ {}^{5}C_{2}x^{3}(x^{3}-1) + {}^{5}C_{4}x(x^{3}-1)^{2}$
	= 2	$2\{5x^7 + 10x^6 + x^5 - 10x^4 - 10x^3 + 5x\}$
	\Rightarrow 0	$\alpha = 10, \beta = 2, \gamma = -20, \delta = 10$
	Nov	v, 10u + 2v = 18
	-20u	1 + 10v = 20
	⇒u	u = 1, v = 4
	u + •	v = 5
[:Q.5]	The	sum of all values of $\theta \in [0, 2\pi]$ satisfying $2\sin^2 \theta = \cos 2\theta$ and $2\cos^2 \theta = 3\sin \theta$ is
	[:A]	4π
	[:B]	$\frac{5\pi}{6}$
	[:C]	π
	[:D]	$\frac{\pi}{2}$
[:ANS]	С	
[:SOLN]	2sii	$a^2\theta = \cos 2\theta$

[3]

```
[4]
                     2\sin^2\theta = 1 - 2\sin^2\theta
                    4\sin^2\theta = 1
                   \sin^2\theta = \frac{1}{4}
                  \sin\theta = \pm \frac{1}{2}
                  2\cos^2\theta = 3\sin\theta
                   2-2\sin^2\theta+3\sin\theta-2=0
                    (2\sin\theta - 1)(2\sin\theta - 2) = 0
                  \sin\theta = \frac{1}{2}
                  so common equation which satisfy both equations
                  is \sin\theta = \frac{1}{2}
                    \theta = \frac{\pi}{6}, \frac{5\pi}{6} \ (\theta \in [0, 2\pi])
                   Sum = \pi
                  Let \vec{a} and \vec{b} be two unit vectors such that the angle between them is \frac{\pi}{3}. If \lambda \vec{a} + 2\vec{b} and
[:Q.6]
                  3 \vec{a} - \lambda \vec{b} are perpendicular to each other, then the number of values of \lambda in [-1,3] is:
                  [:A] 0
                  [:B]
                          3
                  [:C]
                           1
                  [:D]
                          2
[:ANS]
                  Α
[\textbf{:SOLN]} \quad \hat{a}.\hat{b} = \frac{1}{2}
                  Now (\lambda \hat{a} + 2\hat{b}) \cdot (3\hat{a} - \lambda \hat{b}) = 0
                     3\lambda\hat{a}\hat{a} - \lambda^2\hat{a}\hat{b} + 6\hat{a}\hat{b} - 2\lambda\hat{b}\hat{b} = 0
```


 $3\lambda - \frac{\lambda^2}{2} + 3 - 2\lambda = 0$ $\lambda^2 - 2\lambda - 6 = 0$ $\lambda = 1 \pm \sqrt{7}$ \Rightarrow number of values = 0 The perpendicular distance, of the line $\frac{x-1}{2} = \frac{y+2}{-1} = \frac{z+3}{2}$ from the point P(2,-10,1), is: [:Q.7] 3√5 [:A] [:B] 6 [:C] 4√3 [:D] 5√2 [:ANS] Α P(2,-10, 1) $\vec{n} = 2\hat{i} - \hat{j} + 2\hat{k}$ [:SOLN] $\frac{x-1}{2} = \frac{y+2}{-1} = \frac{z+3}{2} = \lambda$ (let) $(2\lambda+1, -\lambda-2, 2\lambda-3)$ $\therefore \overrightarrow{PA} \vec{n} = 0$ $\Rightarrow (2\lambda - 1)2 + (-\lambda + 8)(-1) + (2\lambda - 4)2 = 0$ $\Rightarrow 4\lambda - 2 + \lambda - 8 + 4\lambda - 8 = 0$ $\Rightarrow 9\lambda - 18 = 0 \Rightarrow \lambda = 2$ $\therefore A(5, -4, 1)$ $\therefore AP = \sqrt{3^2 + 6^2 + 0^2} = \sqrt{45} = 3\sqrt{5}$

[6]	JEE MAIN 2025 DATE : 22 JAN 2025 (SHIFT-2) EVENING
[:Q.8]	Suppose that the number of terms in an A.P. is 2k, $k \in N$ IF the sum of all odd terms of the
	A.P. is 40, the sum of all even terms is 55 and the last term of the A.P. exceeds the first term
	by 27, then k is equal to:
	[:A] 6
	[:B] 5
	[:C] 4
	[:D] 8
[:ANS]	В
[:SOLN]	$\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3, \ldots, \mathbf{a}_{2k} \rightarrow_{A.P.}$
	$\sum_{r=1}^{k} a_{2r-1} = 40 , \ \sum_{r=1}^{k} a_{2r} = 55 , \ a_{2k} - a_{1} = 27$
	$\frac{k}{2} [2a_1 + (k-1)2d] = 40, \ \frac{k}{2} [2a_2 + (k-1)2d] = 55,$
	$d = \frac{27}{2k - 1}$
	$a_1 = \frac{40}{k} - (k-1)d = \frac{55}{k} - kd$
	$d = \frac{15}{k} \Rightarrow \frac{27}{2k-1} = \frac{15}{k} \Rightarrow 9k = 10k-5$
	\therefore k = 5
[:Q.9]	The area of the region enclosed by the curves $y = x^2 - 4x + 4$ and $y^2 = 16 - 8x$ is:
	[:A] $\frac{4}{3}$
	[:B] 5
	$[:C] = \frac{8}{2}$
[·ANG]	
[.410]	
[:SOLN]	

	$y = (x - 2)^2, y^2 = 8(x - 2)$
	$y = x^2$, $y^2 = -8x$
	$=\frac{16ab}{3} = \frac{16 \times \frac{1}{4} \times 2}{3} = \frac{8}{3}$
[:Q.10]	Let A = $\{1, 2, 3, 4\}$ and B = $\{1, 4, 9, 16\}$. Then the number of many-one functions f :
	$A \rightarrow B$ such that $1 \in f(A)$ is equal to:
	[:A] 127
	[:B] 151
	[:C] 163
	[:D] 139
[:ANS]	В
[:SOLN]	$Total = 4^4$
	One-one = 4!
	Many-one = $256 - 24 = 232$
	Many-one which $1 \notin f(A)$
	= 3.3.3.3 = 81
	232 - 81 = 151
[:Q.11]	Let $P(4, 4, \sqrt{3})$ be a point on the parabola $y^2 = 4ax$ and PQ be a focal chord of the parabola. If
	M and N are the foot of perpendicular drawn from P and Q respectively on the directrix of the parabola, then the area of the quadrilateral PQMN is equal to:
	$[:A] \frac{34\sqrt{3}}{3}$
	[:B] 17√3
	[:C] $\frac{343\sqrt{3}}{8}$
	[:D] $\frac{263\sqrt{3}}{8}$
[:ANS]	C

[7]

	JEE MAIN 2025 DATE : 22 JAN 2025 (SHIFT-2) EVENING	[9]
[:ANS]	C	
[:SOLN]	$\frac{dx}{dy} + \frac{x}{1+y^2} = \frac{2e^{\tan^{-1}y}}{1+y^2}$	
	$I.F. = e^{\tan^{-1}y}$	
	$xe^{\tan^{-1}y} = \int \frac{2(e^{\tan^{-1}y})^2 dy}{1+y^2}$	
	Put $\tan^{-1}y = t$, $\frac{dy}{1+y^2} = dt$	
	$xe^{\tan^{-1}y} = \int 2e^{2t}dt$	
	$xe^{tan^{-1}y} = e^{2tan^{-1}y} + c$	
	$x = e^{\tan^{-1}y} + ce^{-\tan^{-1}y}$	
	\therefore y = 0, x = 1	
	$1 = 1 + c \Longrightarrow c = 0$	
	$y = \frac{1}{\sqrt{3}}, \ x = e^{\pi/6}$	
[:Q.13]	Let a line pass through two distinct points P(-2, -1, 3) and Q, and be parallel to the v	vector
	$3\hat{i} + 2\hat{j} + 2\hat{k}$. If the distance of the point Q from the point R (1, 3, 3) is 5, then the square	of the
	area ΔPQR is equal to:	
	[:A] 140	
	[:B] 148	
	[:C] 136	
[•ANG]	[.U] 144 C	
	\overrightarrow{PO} parallel to $3\hat{i} + 2\hat{j} + 2\hat{k}$, R(1, 3, 3)	
[:50LN]	$\Rightarrow Q(3\lambda - 2, 2\lambda - 1, 2\lambda + 3), \lambda \in \mathbb{R} - \{0\}$	
	$\left \overrightarrow{\text{QR}} \right = 5 = \sqrt{(3\lambda - 3)^2 + (2\lambda - 4)^2 + (2\lambda)^2}$	
	$\therefore 17\lambda^2 - 34\lambda + 25 = 25 \Longrightarrow \lambda = 2(\because \lambda \neq 0)$	
	\therefore Q(4, 3, 7), P(-2, -1, 3), R(1, 3, 3)	
	Area of $\triangle PQR = [PQR] = \frac{1}{2} \overrightarrow{PQ} \times \overrightarrow{PR} $	

	$[PQR] = \frac{1}{2} \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 6 & 4 & 4 \\ 3 & 4 & 0 \end{vmatrix} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & 2 & 2 \\ 3 & 4 & 0 \end{vmatrix}$
	$[PQR] = -8i + 6j + 6k = \sqrt{136}$
	$\therefore [PQR]^2 = 136$
[:Q.14]	 In a group of 3 girls and 4 boys, there are two boys B₁ and B₂. The number of ways, in which these girls and boys can stand in a queue such that all the girls stand together, all the boys stand together, but B₁ and B₂ are not adjacent to each other, is: [:A] 72 [:B] 144 [:C] 96 [:D] 120
[:ANS]	В
[:SOLN]	Total – when B_1 and B_2 are together
	= 2!(3! 4!) - 2! (3!(3! 2!)) = 144
[:Q.15]	Let $E: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, $a > b$ and $H: \frac{x^2}{A^2} - \frac{y^2}{B^2} = 1$. Let the distance between the foci of E and the foci
	of H be $2\sqrt{3}$. If $a - A = 2$, and the ratio of the eccentricities of E and H is $\frac{1}{3}$, then the sum of the
	lengths of their latus rectums is equal to:
	[:A] 10
	[:B] 9
[·ANS]	C.
	$\mathbf{x}^2 + \mathbf{y}^2$
[:SOLN]	$\frac{a^2}{a^2} + \frac{b^2}{b^2} = 1$ foci are (ae, 0) and (-ae, 0)
	$\frac{x^2}{A^2} + \frac{y^2}{B^2} = 1$ foci are (Ae', 0) and (-Ae', 0)
[:Q.16]	If $\lim_{x \to \infty} \left(\left(\frac{e}{1-e} \right) \left(\frac{1}{e} - \frac{x}{1+x} \right) \right)^x = \alpha$, then the value of $\frac{\log_e \alpha}{1 + \log_e \alpha}$ equals:

[11]

$$\begin{bmatrix} [A] & e \\ [B] & e^2 \\ [C] & e^{-1} \\ [D] & e^{-2} \end{bmatrix}$$

$$\begin{bmatrix} [ANS] & 1 \\ a = \lim_{x \to e^{-1}} \left(\left(\frac{e}{1-e} \right) \left(\frac{1}{e} - \frac{x}{1+x} \right) \right)^x (1^x \text{ form}) \\ \therefore \alpha = e^1 \\ \text{Where } L = \lim_{x \to e^{-1}} x \left(\left(\frac{e}{1-e} \right) \left(\frac{1}{e} - \frac{x}{1+x} \right) - 1 \right) \\ \Rightarrow L = \lim_{x \to e^{-1}} \left(\frac{e}{1-e} \right) x \left(\frac{1}{e} - \frac{x}{1+x} - \left(\frac{1-e}{e} \right) \right) \\ \Rightarrow L = \frac{e}{1-e} \lim_{x \to \infty} \left(1 - \frac{x}{1+x} \right) \\ \Rightarrow L = \frac{e}{1-e} \lim_{x \to \infty} \left(1 - \frac{x}{1+x} \right) \\ \Rightarrow L = \frac{e}{1-e} \lim_{x \to \infty} \left(1 - \frac{x}{1+x} \right) \\ \Rightarrow L = \frac{e}{1-e} \lim_{x \to \infty} \left(1 - \frac{x}{1+x} \right) \\ \Rightarrow L = \frac{e}{1-e} \lim_{x \to \infty} \left(1 - \frac{x}{1+x} \right) \\ \Rightarrow L = \frac{e}{1-e} \lim_{x \to \infty} \left(1 - \frac{x}{1+x} \right) \\ \Rightarrow L = \frac{e}{1-e} \lim_{x \to \infty} \left(1 - \frac{x}{1+x} \right) \\ \Rightarrow L = \frac{e}{1-e} \lim_{x \to \infty} \left(1 - \frac{x}{1+x} \right) \\ \Rightarrow L = \frac{e}{1-e} \lim_{x \to \infty} \left(1 - \frac{x}{1+x} \right) \\ \Rightarrow L = \frac{e}{1-e} \lim_{x \to \infty} \left(1 - \frac{x}{1+x} \right) \\ \Rightarrow L = \frac{e}{1-e} \lim_{x \to \infty} \left(1 - \frac{x}{1+x} \right) \\ \Rightarrow L = \frac{e}{1-e} \lim_{x \to \infty} \left(1 - \frac{x}{1+x} \right) \\ \Rightarrow L = \frac{e}{1-e} \lim_{x \to \infty} \left(1 - \frac{x}{1+x} \right) \\ \Rightarrow L = \frac{e}{1-e} \lim_{x \to \infty} \left(1 - \frac{x}{1+x} \right) \\ \Rightarrow L = \frac{e}{1-e} \lim_{x \to \infty} \left(1 - \frac{x}{1+x} \right) \\ \Rightarrow L = \frac{e}{1-e} \lim_{x \to \infty} \left(1 - \frac{x}{1+x} \right) \\ \Rightarrow L = \frac{e}{1-e} \lim_{x \to \infty} \left(1 - \frac{x}{1+x} \right) \\ \Rightarrow L = \frac{e}{1-e} \lim_{x \to \infty} \left(1 - \frac{x}{1+e} \right) \\ \Rightarrow L = \frac{e}{1-e} \lim_{x \to \infty} \left(1 - \frac{x}{1+e} \right) \\ \Rightarrow L = \frac{e}{1-e} \lim_{x \to \infty} \left(1 - \frac{x}{1+e} \right) \\ \Rightarrow L = \frac{e}{1-e} \lim_{x \to \infty} \left(1 - \frac{x}{1+e} \right) \\ \Rightarrow L = \frac{e}{1-e} \lim_{x \to \infty} \left(1 - \frac{x}{1+e} \right) \\ \Rightarrow L = \frac{e}{1-e} \lim_{x \to \infty} \left(1 - \frac{x}{1+e} \right) \\ \Rightarrow L = \frac{e}{1-e} \lim_{x \to \infty} \left(1 - \frac{x}{1+e} \right) \\ \Rightarrow L = \frac{e}{1-e} \lim_{x \to \infty} \left(1 - \frac{x}{1+e} \right) \\ \Rightarrow L = \frac{e}{1-e} \lim_{x \to \infty} \left(1 - \frac{x}{1+e} \right) \\ \Rightarrow L = \frac{e}{1-e} \lim_{x \to \infty} \left(1 - \frac{x}{1+e} \right) \\ \Rightarrow L = \frac{e}{1-e} \lim_{x \to \infty} \left(1 - \frac{x}{1+e} \right) \\ \Rightarrow L = \frac{e}{1-e} \lim_{x \to \infty} \left(1 - \frac{x}{1+e} \right) \\ \Rightarrow L = \frac{e}{1-e} \lim_{x \to \infty} \left(1 - \frac{x}{1+e} \right) \\ \Rightarrow L = \frac{e}{1-e} \lim_{x \to \infty} \left(1 - \frac{x}{1+e} \right) \\ \Rightarrow L = \frac{e}{1-e} \lim_{x \to \infty} \left(1 - \frac{x}{1+e} \right) \\ \Rightarrow L = \frac{e}{1-e} \lim_{x \to \infty} \left(1 - \frac{x}{1+e} \right) \\ \Rightarrow L = \frac{e}{1-e} \lim_{x \to \infty} \left(1 - \frac{x}{1+e} \right)$$

Mentors Eduserv: Parus Lok Complex, Boring Road Crossing, Patna-1 Helpline No.: 9569668800 | 7544015993/4/6/7

[13]

$$\begin{aligned} x - y &= 2 \\ |z - 3| &\leq 1 \\ (x - 3)^{2} + y^{2} &\leq 1 \\ \text{Area of shaded region} &= \frac{\pi . 1^{2}}{4} - \frac{1}{2} \cdot 1 . 1 = \frac{\pi}{4} - \frac{1}{2} \\ \text{Area of unshaded region inside the circle} \\ &= \frac{3}{4} \pi . 1^{2} + \frac{1}{2} \cdot 1 . 1 = \frac{3\pi}{4} + \frac{1}{2} \\ \therefore & \text{ difference of area} = \left(\frac{3\pi}{4} + \frac{1}{2}\right) - \left(\frac{\pi}{4} - \frac{1}{2}\right) \\ &= \frac{\pi}{2} + 1 \\ \text{[:Q.19]} \quad \text{If } \int e^{z} \left(\frac{x \sin^{-1} x}{\sqrt{1 - x^{2}}} + \frac{\sin^{-1} x}{(1 - x^{2})^{3/2}} + \frac{x}{1 - x^{2}}\right) dx = g(x) + C, \text{ where C is the constant of integration, then} \\ &g\left(\frac{1}{2}\right) \text{ equals:} \\ &\text{[:A]} \quad \frac{\pi}{4} \sqrt{\frac{6}{3}} \\ &\text{[:B]} \quad \frac{\pi}{6} \sqrt{\frac{6}{3}} \\ &\text{[:C]} \quad \frac{\pi}{6} \sqrt{\frac{6}{2}} \\ &\text{[:D]} \quad \frac{\pi}{4} \sqrt{\frac{6}{2}} \\ &\text{[:SOLM]} \quad \because \frac{d}{dx} \left(\frac{x \sin^{-1} x}{\sqrt{1 - x^{2}}}\right) = \frac{\sin^{-1} x}{(1 - x^{2})^{3/2}} + \frac{x}{1 - x^{2}} \\ &\Rightarrow \int e^{z} \left(\frac{x \sin^{-1} x}{\sqrt{1 - x^{2}}} + \frac{\sin^{-1} x}{(1 - x^{2})^{3/2}} + \frac{x}{1 - x^{2}}\right) dx \\ &= e^{x} \cdot \frac{x \sin^{-1} x}{\sqrt{1 - x^{2}}} + c = g(x) + C \end{aligned}$$

Note : assuming
$$g(x) = \frac{xe^x \sin^{-1} x}{\sqrt{1-x^2}}$$

$$g(1/2) = \frac{e^{1/2}}{2} \cdot \frac{\frac{\pi}{6} \times 2}{\sqrt{3}} = \frac{\pi}{6} \sqrt{\frac{e}{3}}$$

Comment : In this question we will not get a unique function g(x), but in order to match the answer we will have to assume

$$g(x) = \frac{xe^x \sin^{-1} x}{\sqrt{1-x^2}}.$$

[:Q.20] If A and B are two events such that $P(A \cap B) = 0.1$, and P(A|B) and P(B|A) are the roots of

the equation
$$12x^2 - 7x + 1 = 0$$
, then the value of $\frac{P(\overline{A} \cup \overline{B})}{P(\overline{A} \cap \overline{B})}$ is:

[:A] $\frac{7}{4}$ $\frac{5}{3}$ [:B] $\frac{9}{4}$ [:C] $\frac{4}{3}$ [:D] [:ANS] С [:SOLN] $12x^2 - 7x + 1 = 0$ $x = \frac{1}{3}, \frac{1}{4}$ Let $P\left(\frac{A}{B}\right) = \frac{1}{3} \& P\left(\frac{B}{A}\right) = \frac{1}{4}$ $\frac{P(A \cap B)}{P(B)} = \frac{1}{3} \& \frac{P(A \cap B)}{P(A)} = \frac{1}{4}$ $\Rightarrow P(B) = 0.3$ & P(A) = 0.4 $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ = 0.3 + 0.4 - 0.1 = 0.6

[14]

	JEE MAIN 2025 DATE : 22 JAN 2025 (SHIFT-2) EVENING [15]
	Now $\frac{P(\overline{A} \cup \overline{B})}{P(\overline{A} \cap \overline{B})} = \frac{P(\overline{A \cap B})}{P(\overline{A \cup B})}$
	$=\frac{1-P(A \cap B)}{1-P(A \cup B)} = \frac{1-0.1}{1-0.6} = \frac{9}{4}$
	SECTION 2
[:Q.21]	Let A = $\{1, 2, 3\}$. The number of relations on A, containing (1,2) and (2,3), which are reflexive
	and transitive but not symmetric, is
[:ANS]	3
[:SOLN]	Transitivity
	$(1,2) \in \mathbb{R}, (2,3) \in \mathbb{R} \Rightarrow (1,3) \in \mathbb{R}$
	For reflexive $(1, 1), (2, 2) (3, 3) \in \mathbb{R}$
	Now (2, 1), (3, 2), (3, 1)
	(3, 1) cannot be taken
	(1) (2, 1) taken and (3, 2) not taken
	(2) (3, 2) taken and (2, 1) not taken
	(3) Both not taken therefore 3 relations are possible.
[:Q.22]	If $\sum_{r=1}^{30} \frac{r^2 ({}^{30}C_r)^2}{{}^{30}C_{r-1}} = \alpha \times 2^{29}$, then α is equal to
[:ANS]	465
	$\sum_{r=1}^{30} \frac{r^2 ({}^{30}C_r)^2}{{}^{30}C_r}$
[:SOLN]	
	$= \sum_{r=1}^{30} r^2 \left(\frac{31-r}{r} \right) \cdot \frac{30!}{r!(30-r)!}$
	$\left(::\frac{{}^{30}C_r}{{}^{30}C_{r-1}} = \frac{30-r+1}{r} = \frac{31-r}{r}\right)$
	$= \sum_{r=1}^{30} \frac{(31-r)30!}{(r-1)!(30-r)!}$
	$= 30 \sum_{r=1}^{30} \frac{(31-r)29!}{(r-1)!(30-r)!}$

$$= 30\sum_{r=1}^{30} (30 - r + 1)^{29} C_{30-r}$$

= $30\left(\sum_{r=1}^{30} (31 - r)^{29} C_{30-r} + \sum_{r=1}^{30} {}^{29} C_{30-r}\right)^{29}$
= $30(29 \times 2^{28} + 2^{29}) = 30(29 + 2)2^{28}$
= $15 \times 31 \times 2^{29}$
= $465(2^{29})$
 $\alpha = 465$

- [:Q.23] Let A (6, 8), B(10 $\cos \alpha$, -10 $\sin \alpha$) and C(-10 $\sin \alpha$, 10 $\cos \alpha$), be the vertices of a triangle. If L (a, 9) and G(h, k) be its orthocenter and centroid respectively, then $(5a 3h + 6k + 100 \sin 2\alpha)$ is
- [:ANS] 145
- **[:SOLN]** All the three points A, B, C lie on the circle $x^2 + y^2 = 100$ so circumcentre is (0, 0)

$$\frac{1}{0(0,0)} + \frac{2}{G(h,k)} + L(a,9)$$

$$\frac{a+0}{3} = h \Rightarrow a = 3h$$
and $\frac{9+0}{3} = k \Rightarrow k = 3$
also centroid $\frac{6+10\cos\alpha - 10\sin\alpha}{3} = h$

$$\Rightarrow 10(\cos\alpha - \sin\alpha) = 3h - 6 \qquad \dots (i)$$
and $\frac{8+10\cos\alpha - 10\sin\alpha}{3} = k$

$$\Rightarrow 10(\cos\alpha - \sin\alpha) = 3k - 8 = 9 - 8 = 1 \dots (ii)$$
on squaring $100(1 - \sin2\alpha) = 1$

$$\Rightarrow 100\sin2\alpha = 99$$
from equ. (i) and (ii) we get $h = \frac{7}{3}$
Now $5a - 3h + 6k + 100 \sin2\alpha$

$$= 15h - 3h + 6k + 100 \sin2\alpha$$

