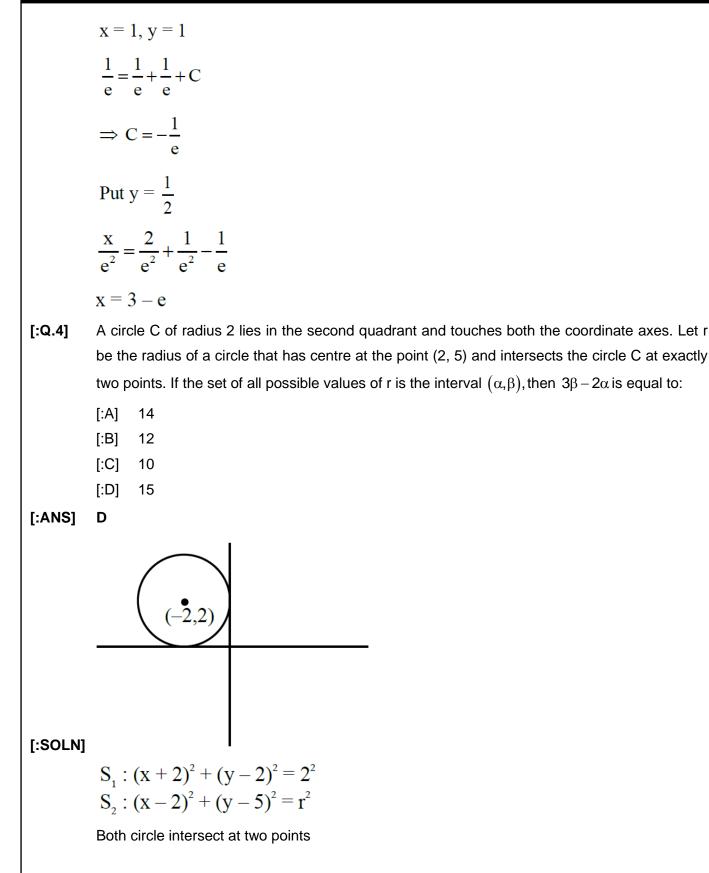
	Mentors Eduserv [®]	
JEE MAIN 2025 DATE : 22 JAN 2025 (SHIFT-1) MORNING MATHEMATICS SECTION 1		
[:Q.1]	Let the triangle PQR be the image of the triangle with vertices (1,3), (3,1) and (2, 4) in the line	
	x + 2y = 2. IF the centroid of $\triangle PQR$ is the point (α,β) , then $15(\alpha - \beta)$ is equal to:	
	[:A] 22	
	[:B] 24	
	[:C] 21	
	[:D] 19	
[:ANS]	Α	
[:SOLN]	Let 'G' be the centroid of Δ formed by (1, 3) (3, 1)	
	& (2, 4)	
	$\mathbf{G} \cong \left(2, \frac{8}{3}\right)$	
	Image of G w.r.t. $x + 2y - 2 = 0$	
	$\frac{\alpha - 2}{1} = \frac{\beta - \frac{8}{3}}{2} = -2\frac{\left(2 + \frac{16}{3} - 2\right)}{1 + 4}$	
	$=\frac{-2}{5}\left(\frac{16}{3}\right)$	
	$\Rightarrow \alpha = \frac{-32}{15} + 2 = \frac{-2}{15}, \ \beta = \frac{-32 \times 2}{15} + \frac{8}{3} = \frac{-24}{15}$	
	$15(\alpha - \beta) = -2 + 24 = 22$	
[:Q.2]	Let the foci of a hyperbola be $(1, 14)$ and $(1, -12)$. If it passes through the point $(1, 6)$, then the length of its latus-rectum is:	

[2]	JEE MAIN 2025 DATE : 22 JAN 2025 (SHIFT-1) MORNING
	[:A] $\frac{288}{5}$
	[:B] $\frac{144}{5}$
	[:C] $\frac{24}{5}$
	[:D] $\frac{25}{6}$
[:ANS]	Α
[:SOLN]	
	(1, 14)
	(1, 6)
	0
	•(1,-12)
	be = 13, b = 5
	$a^2 = b^2 (e^2 - 1)$
	$=b^2e^2-b^2$
	= 169 - 25 = 144
	$\ell(LR) = \frac{2a^2}{b} = \frac{2 \times 144}{5} = \frac{288}{5}$

Let x = x(y) be the solution of the differential equation $y^2 dx + \left(x - \frac{1}{y}\right) dy = 0$. If x(1) = 1, then [:Q.3] $x\left(\frac{1}{2}\right)$ is: [:A] 3+e [:B] $\frac{1}{2} + e$ [:C] $\frac{3}{2} + e$ 3 – e [:D] [:ANS] D [:SOLN] $\frac{\mathrm{dx}}{\mathrm{dy}} + \left(\frac{1}{\mathrm{v}^2}\right)\mathrm{x} = \frac{1}{\mathrm{v}^3}$ I.F. = $e^{\int \frac{1}{y^2} dy} = e^{-\frac{1}{y}}$ \Rightarrow x.e^{$-\frac{1}{y}$} = $\int \left(e^{-\frac{1}{y}} \right) \cdot \frac{1}{y^3} dy$ Put $-\frac{1}{v} = t$ $+\frac{1}{v^2}dy = dt$ $x.e^{\frac{1}{y}} = -\int t.e^{t}dt$ $x.e^{-\frac{1}{y}} = -te^{t} + e^{t} + C$ $x.e^{-\frac{1}{y}} = \frac{+1}{v}e^{-\frac{1}{y}} + e^{-\frac{1}{y}} + C$

Mentors Eduserv: Parus Lok Complex, Boring Road Crossing, Patna-1 Helpline No.: 9569668800 | 7544015993/4/6/7

[3]



	$\therefore \mathbf{r}_1 - \mathbf{r}_2 < \mathbf{c}_1 \mathbf{c}_2 < \mathbf{r}_1 + \mathbf{r}_2$	
	r-2 < 5 < 2 + r	
	$\Rightarrow 3 < r < 7$	
	$r \in (3, 7)$	
	$\alpha = 3, \beta = 7$	
	$3\beta - 2\alpha = 15$	
[:Q.5]	Let a_1, a_2, a_3, \dots be a G.P. of increasing positive terms. If $a_1a_5 = 28$ and $a_2a_4 = 29$, then a_6 is equal to: [:A] 812 [:B] 784 [:C] 628 [:D] 526	
[:ANS]	В	
[:SOLN]	$a_1 a_5 = 28 \Rightarrow a a r^4 = 28 \Rightarrow a^2 r^4 = 28 \qquad \dots (1)$	
	$a_2 + a_4 = 29 \Longrightarrow ar + ar^3 = 29$	
	$\Rightarrow ar(1+r^2)=29$	
	$\Rightarrow a^2 r^2 (1 + r^2)^2 = (29)^2 \qquad \dots (2)$	
	By Eq. (1) & (2)	
	$\frac{r^2}{(1+r^2)^2} = \frac{28}{29 \times 29}$	
	$\Rightarrow \frac{r}{1+r^2} = \frac{\sqrt{28}}{29} \Rightarrow r = \sqrt{28}$	
	$\therefore a^2 r^4 = 28 \Longrightarrow a^2 \times (28)^2 = 28$	
	$\Rightarrow a = \frac{1}{\sqrt{28}}$	

[6] | JEE MAIN 2025 | DATE : 22 JAN 2025 (SHIFT-1) MORNING $\therefore a_6 = ar^5 = \frac{1}{\sqrt{28}} \times (28)^2 \sqrt{28} = 784$ [:Q.6] The number of non-empty equivalence relations on the set {1, 2, 3} is : [:A] 7 [:B] 6 [:C] 5 [:D] 4 [:ANS] С [:SOLN] Let R be the required relation $A = \{(1, 1), (2, 2), (3, 3)\}$ (i) $|\mathbf{R}| = 3$, when $\mathbf{R} = \mathbf{A}$ (ii) $|\mathbf{R}| = 5$, e.g. $\mathbf{R} = \mathbf{A} \cup \{(1, 2), (2, 1)\}$ Number of R can be [3] (iii) $R = \{1, 2, 3\} \times \{1, 2, 3\}$ Let $f: R \rightarrow R$ be a twice differentiable function such that f(x + y) = f(x) f(y) for all x, $y \in R$. If [:Q.7] f'(0) = 4a and f satisfies f'(x) - 3af'(x) - f(x) = 0, a > 0, then the area of the region $R = \{(x, y) | 0 \le y \le f(ax), 0 \le x \le 2\}$ is: [:A] $e^4 + 1$ [:B] e⁴ - 1 [:C] e² + 1 [:D] e² - 1 [:ANS] D [:SOLN] f(x + y) = f(x).f(y) \Rightarrow f(x) = e^{λx} f'(0) = 4a \Rightarrow f'(x) = $\lambda | e^{\lambda x} \Rightarrow \lambda = 4a$ So, $f(x) = e^{4ax}$ f''(x) - 3af'(x) - f(x) = 0

$$\Rightarrow \lambda^{2} - 3a\lambda - 1 = 0$$

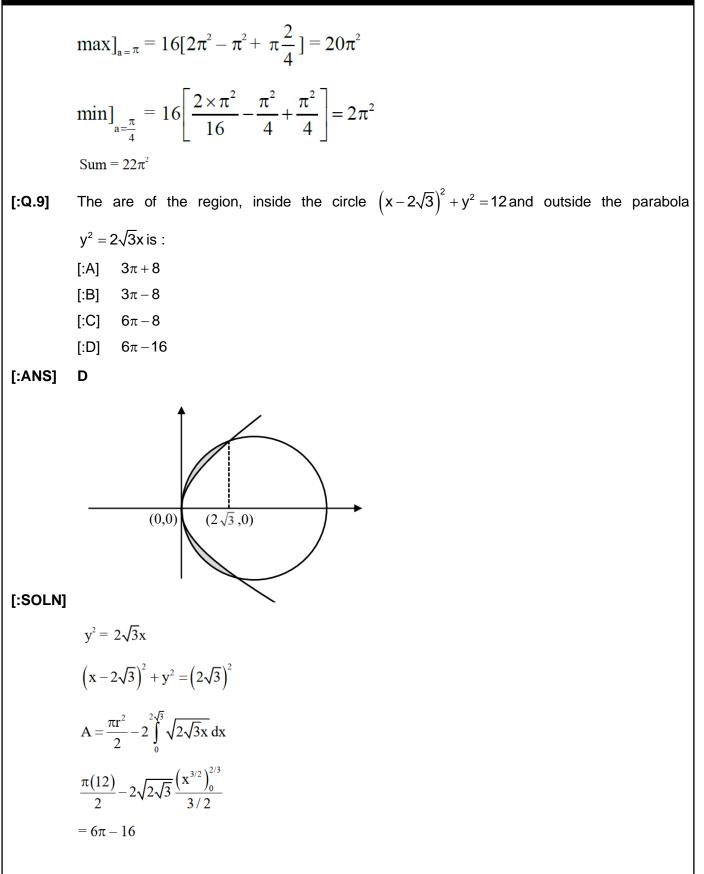
$$\Rightarrow 16a^{2} - 12a^{2} - 1 = 0 \Rightarrow 4a^{2} = 1 \Rightarrow \boxed{a = \frac{1}{2}}$$

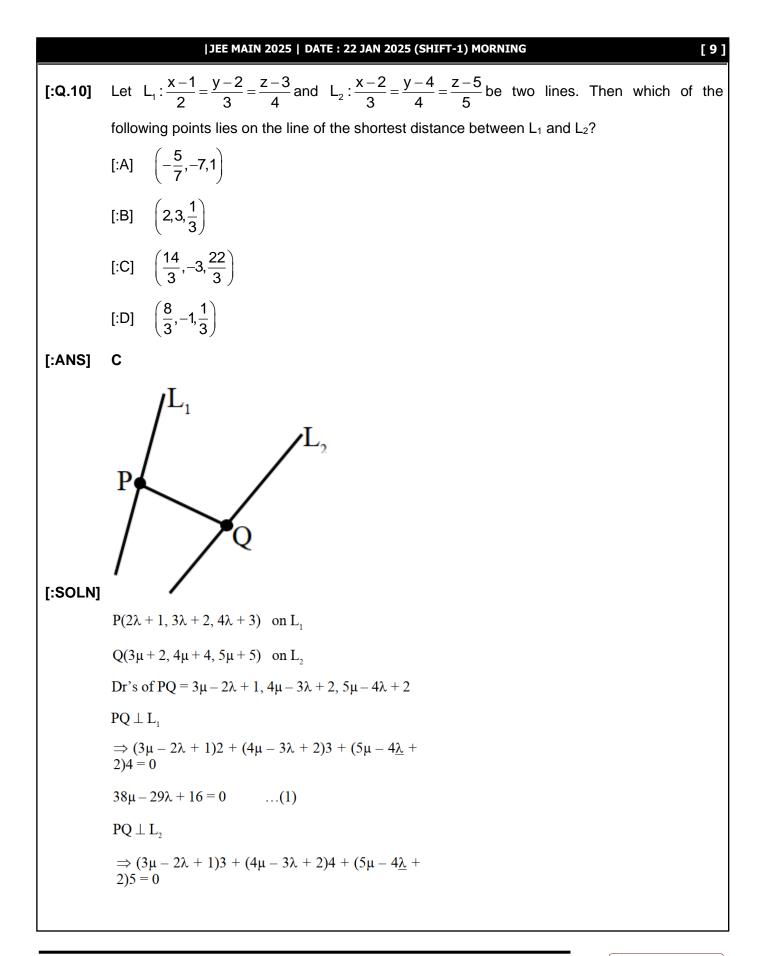
$$x = 0 \qquad x = 2$$

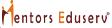
$$f(x) = e^{2x}$$

Area = $\int_{0}^{2} e^{x} dx = \boxed{e^{2} - 1}$
[:0.8] Using the principal values of the inverse trigonometric functions, the sum of the maximum and the minimum values of $16((\sec^{-1}x)^{2} - (\csc^{-1}x)^{2})$ is:
[:A] $22\pi^{2}$
[:B] $31\pi^{2}$
[:C] $24\pi^{2}$
[:D] $18\pi^{2}$
[:SOLN] $16(\sec^{-1}x)^{2} + (\csc^{-1}x)^{2}$
Sec⁻¹x = $a \in [0, \pi] - \left\{\frac{\pi}{2}\right\}$
 $\csc^{-1}x = a \in [0, \pi] - \left\{\frac{\pi}{2}\right\}$
 $\csc^{-1}x = \frac{\pi}{2} - a$
 $= 16\left[a^{2} + \left(\frac{\pi}{2} - a\right)^{2}\right] = 16\left[2a^{2} - \pi a + \frac{\pi^{2}}{4}\right]$

[7]







[10]

|JEE MAIN 2025 | DATE : 22 JAN 2025 (SHIFT-1) MORNING

$$50\mu - 38\lambda + 21 = 0 \qquad ...(2)$$
By (1) & (2)
 $\lambda = \frac{1}{3}; \ \mu = \frac{-1}{6}$
 $\therefore P\left(\frac{5}{3}, 3, \frac{13}{3}\right) & Q\left(\frac{3}{2}, \frac{10}{3}, \frac{25}{6}\right)$
Line PQ
 $\frac{x - \frac{5}{3}}{1} = \frac{y - 3}{-2} = \frac{z - \frac{13}{3}}{1}$
Point $\left(\frac{14}{3}, -3, \frac{22}{3}\right)$
lies on the line PQ
[:Q,11] Let A = {1, 2, 3,, 10} and B = $\left\{\frac{m}{n}; m, n \in A, m < n \text{ and } gcd(m, n) = 1\right\}$. Then n(B) equal to:
[A] 36
[B] 29
[:C] 31
[:D] 37
[:ANS] C
[:SOLN] A = {1, 2,10}
B $\left\{\frac{m}{n} - m, n \in A, m < n, gcd(m, n) = 1\right\}$
n(B)
n = 2 $\left\{\frac{1}{2}\right\}$
n = 3 $\left\{\frac{1}{3}, \frac{2}{3}\right\}$
n = 4 $\left\{\frac{1}{3}, \frac{3}{4}\right\}$

	n = 5	$\left\{\frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}\right\}$
	n = 6	$\left\{\frac{1}{6}, \frac{5}{6}\right\}$
	n = 7	$\left\{\frac{1}{7}, \frac{2}{7}, \frac{3}{7}, \frac{4}{7}, \frac{5}{7}, \frac{6}{7}\right\}$
	n = 8	$\left\{\frac{1}{8}, \frac{3}{8}, \frac{5}{8}, \frac{7}{8}\right\}$
	n = 9	$\left\{\frac{1}{9}, \frac{2}{9}, \frac{4}{9}, \frac{5}{9}, \frac{7}{9}, \frac{8}{9}\right\}$
	n = 10	$\left\{\frac{1}{10}, \frac{3}{10}, \frac{7}{10}, \frac{9}{10}\right\}$
	n(B) = 31	
[:Q.12]	Two balls	are selected at random one by one without replacement from a bag containing 4
.		6 black balls. If the probability that the first selected ball is black, given that the
	second sel	lected ball is also black, is $\frac{m}{n}$, where gcd (m, n) = 1, then m + n is equal to:
	[:A] 4	
	[:B] 11	
	[:C] 13	
	[:D] 14	
[:ANS]	D	
[:SOLN]	$P = \frac{\frac{6}{10}}{\frac{4}{10} \times \frac{6}{9}}$	$\frac{\times \frac{5}{9}}{-\frac{6}{10} \times \frac{5}{9}} = \frac{5}{9}$
	m = 5, n =	9
	m + n = 14	
[:Q.13]	Let for f	$(x) = 7 \tan^8 x + 7 \tan^6 x - 3 \tan^4 x - 3 \tan^2 x$, $l_1 = \int_{0}^{\frac{\pi}{4}} f(x) dx$ and $l_2 = \int_{0}^{\frac{\pi}{4}} x f(x) dx$. Then
	$7l_1 + 12l_2$ is	equal to:
	[:Α] π	

[11]

[12]	JEE MAIN 2025 DATE : 22 JAN 2025 (SHIFT-1) MORNING
	[:B] 2
	[:C] 1
	[:D] 2π
[:ANS]	C
[:SOLN]	$f(x) = (7\tan^6 x - 3\tan^2 x)(\sec^2 x)$
	$I_1 = \int_0^{\pi/4} (7\tan^6 x - 3\tan^2 x)(\sec^2 x) dx$
	Put tanx = t
	$I_{1} = \int_{0}^{1} (7t^{6} - 3t^{2}) dt = \left[t^{7} - t^{3}\right]_{0}^{1} = 0$
	$I_{2} = \int_{0}^{\pi/4} x \underbrace{(7 \tan^{6} x - 3 \tan^{2} x)(\sec^{2} x)}_{II} dx$
	$= \left[x \left(\tan^7 x - \tan^3 x \right) \right]_0^{\pi/4} - \int_0^{\pi/4} (\tan^7 x - \tan^3 x) dx$
	$= 0 - \int_{0}^{\pi/4} \tan^{3} x \left(\tan^{2} x - 1 \right) \left(1 + \tan^{2} x \right) dx$
	Put tanx = t
	$= -\int_{0}^{1} \left(t^{5} - t^{3}\right) dt = -\left[\frac{t^{6}}{6} - \frac{t^{4}}{4}\right] = \frac{1}{12}$
	$7I_1 + 12I_2 = 1$
[:Q.14]	Let z_1, z_2 and z_3 be three complex numbers on the circle $ z = 1$ with are $(z_1) = \frac{-\pi}{4}$, are
	$(z_2) = 0$ and are $(z_3) = \frac{\pi}{4}$. If $ z_1\overline{z}_2 + z_2\overline{z}_3 + z_3\overline{z}_1 ^2 = \alpha + \beta\sqrt{2}, \alpha, \beta \in \mathbb{Z}$, then the value of $x^2 + \beta^2$ is:
	[:A] 29
	[:B] 24
	[:C] 41
	[:D] 31
[:ANS]	A
[:SOLN]	$Z_1 = e^{-i\pi/4}$, $Z_2 = 1$, $Z_3 = e^{i\pi/4}$

$$\begin{split} |z_{1}\overline{z}_{2} + z_{2}\overline{z}_{1} + z_{3}\overline{z}_{1}|^{2} &= \left|e^{-\frac{z}{4}} \times 1 + 1 \times e^{-\frac{z}{4}} + e^{\frac{z}{4}} \times e^{\frac{z}{4}}\right|^{2} \\ &= \left|2e^{-\frac{z}{4}} + e^{-\frac{z}{4}} + e^{\frac{z}{4}}\right|^{2} \\ &= \left|2e^{-\frac{z}{4}} + e^{-\frac{z}{4}} + e^{\frac{z}{4}}\right|^{2} \\ &= \left|\sqrt{2} - \sqrt{2}i + i\right|^{2} \\ &= \left(\sqrt{2}\right)^{2} + \left(1 - \sqrt{2}\right)^{2} = 2 + 1 + 2 - 2\sqrt{2} = 5 - 2\sqrt{2} \\ &\alpha = 5, \beta = -2 \\ &\Rightarrow \alpha^{2} + \beta^{2} = 29 \end{split}$$

$$[:Q.15] \quad If \sum_{r=1}^{n} T_{r} = \frac{(2n-1)(2n+1)(2n+3)(2n+5)}{64} \cdot \text{then } \lim_{n \to \infty} \sum_{r=1}^{n} \left(\frac{1}{T_{r}}\right) \text{ is equal to:} \\ &[:A] \quad \frac{1}{3} \\ &[:B] \quad \frac{2}{3} \\ &[:C] \quad 1 \\ &[:D] \quad 0 \\ [:ANS] \quad B \\ [:SOLN] \quad T_{n} = S_{n} - S_{n-1} \\ &\Rightarrow T_{n} = \frac{1}{8}(2n-1)(2n+1)(2n+3) \\ &\Rightarrow \frac{1}{T_{n}} = \frac{8}{(2n-1)(2n+1)(2n+3)} \\ &= \frac{1}{T_{n}} = \frac{8}{(2n-1)(2n+1)(2n+3)} \\ &= \lim_{n \to \infty} \frac{8}{4} \sum \left(\frac{1}{(2n-1)(2n+1)(2n+3)} - \frac{1}{(2n+1)(2n+3)}\right) \\ &= \lim_{n \to \infty} \frac{8}{4} \sum \left[\left(\frac{1}{(2n-1)(2n+1)} - \frac{1}{(2n+1)(2n+3)}\right) \\ &= \lim_{n \to \infty} 2\left[\left(\frac{1}{1,3} - \frac{1}{3,5}\right) + \left(\frac{1}{3,5} - \frac{1}{5,7}\right) + \dots\right] \\ &= \frac{2}{3} \end{split}$$

[14]	JEE MAIN 2025 DATE : 22 JAN 2025 (SHIFT-1) MORNING
[:Q.16]	A coin is tossed three times. Let X denote the number of times a tail follow a head. If μand
	σ^2 denote the mean and variance of X, then the value of $64(\mu + \sigma^2)$ is:
	[:A] 64
	[:B] 51
	[:C] 32
	[:D] 48
[:ANS]	D
[:SOLN]	$HHH \rightarrow 0$
	$HHT \rightarrow 0$
	$\rm HTH \rightarrow 1$
	$HTT \rightarrow 0$
	$THH \rightarrow 1$
	$\text{THT} \rightarrow 1$
	$TTH \rightarrow 1$
	$TTT \rightarrow 0$
	Probability distribution
	$\frac{\mathbf{x}_{i} 0 1}{\mathbf{P}(\mathbf{x}_{i}) \frac{1}{2} \frac{1}{2}}$ $\mu = \sum \mathbf{x}_{i} \mathbf{p}_{i} = \frac{1}{2}$
	$\mu = \sum x_i p_i = \frac{1}{2}$
	$\sigma^2 = \sum x_i^2 p_i - \mu^2$
	$=\frac{1}{2}-\frac{1}{4}=\frac{1}{4}$
	$64(\mu + \sigma^2) = 64\left(\frac{1}{2} + \frac{1}{4}\right) = 48$
[:Q.17]	Let f (x) be a real differentiable function such that $f(0) = 1$ and
	$f(x+y) = f(x)f'(y) + f'(x)f(y)$ for all $x, y, \in \mathbb{R}$. Then $\sum_{n=1}^{100} \log_e f(n)$ is equal to:
	[:A] 5220
	[:B] 2525
	[:C] 2384

	JEE MAIN 2025 DATE : 22 JAN 2025 (SHIFT-1) MORNING [15]
	[:D] 2384
[:ANS]	В
[:SOLN]	f(x + y) = f(x) f'(y) + f'(x) f(x)
	Put = x = y = 0
	f(0) = f(0)f'(0) + f'(0)f(0)
	$\mathbf{f}'(0) = \frac{1}{2}$
	Put $y = 0$
	f(x) = f(x) f'(0) + f'(x)f(0)
	$f(x) = \frac{1}{2}f(x) + f'(x)$
	$f'(x) = \frac{f(x)}{2}$
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y}{2} \Longrightarrow \int \frac{\mathrm{d}y}{y} = \int \frac{\mathrm{d}x}{2}$
	$\Rightarrow \ell \mathbf{n} \mathbf{y} = \frac{\mathbf{x}}{2} + \mathbf{c}$
[:Q.18]	From all the English alphabets, five letters are chosen and are arranged in alphabetical order.
	The total number of ways, in which the middle latter is 'M', is:
	[:A] 6084
	[:B] 14950
	[:C] 5148 [:D] 4356
[:ANS]	[:D] 4356 C
[:SOLN]	$= \underbrace{{}^{12}C_2}_{2} \times \underbrace{{}^{13}C_2}_{2} = 5148$
[:Q.19]	Let the parabola $y = x^2 px - 3$, meet the corrdinate axes at the points, P, Q and R. If the circle
	C with centre at $(-1, -1)$ passes through the points, P, Q and R, then the area of ΔPQR is:
	[:A] 6
	[:B] 4
	[:C] 7
	[:D] 5

[:ANS]	Α
[:SOLN]	$\mathbf{y} = \mathbf{x}^2 + \mathbf{p}\mathbf{x} - 3$
	Let $P(\alpha, 0)$, $Q(\beta, 0)$, $R(0, -3)$
	Circle with centre $(-1, -1)$ is $(x + 1)^2 + (y + 1)^2 = r^2$
	Passes through $(0, -3)$
	$1^{2} + (-2)^{2} = r^{2}$]
	$r^2 = 5$
	$(x + 1)^2 + (y + 1)^2 = 5$
	Put $y = 0$
	$(x+1)^2 = 5-1$
	$(x + 1)^2 = 4$
	$\mathbf{x} + 1 = \pm 2$
	x = 1 or $x = -3$
	\therefore P(1, 0) and Q(-3,0)
	Area of $\triangle PQR = \frac{1}{2} \begin{vmatrix} 1 & 0 & 1 \\ -3 & 0 & 1 \\ 0 & -3 & 1 \end{vmatrix} = 6$
[:Q.20]	The product of all solutions of the equation $e^{5(\log_e x)^2 + 3} = x^8$, $x > 0$, is:
	[:A] e
	[:B] e ^{8/5}
	[:C] e ^{6/5}
	[:D] e ²
[:ANS]	Β
[:SOLN]	$e^{5(lnx)^2+3} = x^8$
	$\Rightarrow \ell n e^{5(\ell n x)^2 + 3} = \ell n x^8$
	$\Rightarrow 5(\ell nx)^2 + 3 = 8\ell nx$
	$(\ell \mathbf{n}\mathbf{x} = \mathbf{t})$

JEE MAIN 2025 DATE : 22 JAN 2025 (SHIFT-1) MORNIN	G
---	---

	$\Rightarrow 5t^2 - 8t + 3 = 0$
	$t_1 + t_2 = \frac{8}{5}$
	$\ell \mathbf{n} \mathbf{x}_1 \mathbf{x}_2 = \frac{8}{5}$
	$x_1 x_2 = e^{8/5}$
	SECTION 2
[:Q.21]	Let A be a square matrix of order 3 such that det $(A) = -2$ and det $(3adj (-6adj (3A))) =$
	2^{m+n} . 3^{mm} ,m > n. Then 4 m + 2n is equal to
[:ANS]	34
[:SOLN]	A = -2
	det(3adj(-6adj(3A)))
	$= 3^{3} det(adj(-adj(3A)))$
	$=3^{3}(-6)^{6}(\det(3A))^{4}$
	$=3^{21} \times 2^{10}$
	m + n = 10
	mn = 21
	m = 7; $n = 3$
[:Q.22]	Let the function,
	$f(x) = \begin{cases} -3 ax^2 - 2, & x < 1 \\ a^2 + bx, & x \ge 1 \end{cases}$
	be differentiable for all $x \in R$, where a>1, $b \in R$. If the area of the region enclosed by
	$y = f(x)$ and the line $y = -20$ is $\alpha + \beta\sqrt{3}$, $\alpha\beta \in Z$, then the value of $\alpha + \beta$ is
[:ANS]	34
[:SOLN]	f(x) is continuous and differentiable
	at $x = 1$; LHL = RHL, LHD = RHD
	$-3a-2 = a^2 + b$, $-6a = b$
	a = 2, 1; b = -12

[19]

	= 216
[:Q.24]	If $\sum_{r=0}^{5} \frac{{}^{11}C_{2r+1}}{2r+2} = \frac{m}{n}$; gcd(m,n) = 1, then , m – n is equal to
[:ANS]	2035
[:SOLN]	$\int_{0}^{1} (1+x)^{11} dx = \left[C_{0}x + \frac{C_{1}x^{2}}{2} + \frac{C_{2}x^{3}}{3} + \dots \right]_{0}^{1}$
	$\frac{2^{12}-1}{12} = C_0 + \frac{C_1}{2} + \frac{C_2}{3} + \frac{C_3}{4} + \dots$
	$\int_{-1}^{0} (1+x)^{11} dx = \left[C_0 x + \frac{C_1 x^2}{2} + \frac{C_2 x^3}{3} + \dots \right]_{-1}^{0}$
	$\frac{1}{12} = C_0 - \frac{C_1}{2} + \frac{C_2}{3} - \frac{C_3}{4} + \dots$
	$\frac{2^{12}-2}{12} = 2\left(\frac{C_1}{2} + \frac{C_3}{4} + \frac{C_5}{6} + \dots\right)$
	$\frac{C_1}{2} + \frac{C_3}{4} - \frac{C_5}{6} + \dots = \frac{2^{11} - 1}{12} = \frac{2047}{12}$
[:Q.25]	Let \vec{C} be the projection vector of $\vec{b} = \lambda \hat{i} + 4\hat{k}, \lambda > 0$, on the vector $\vec{a} = \hat{i} + 2\hat{j} + 2\hat{k}$. If
	$\left \vec{a} + \vec{c} \right = 7$, then the area of the parallelogram formed by the vectors $\vec{b} + \vec{c}$ is
[:ANS]	16
[:SOLN]	$\vec{\mathbf{c}} = \left(\frac{\vec{\mathbf{b}} \cdot \vec{\mathbf{a}}}{\left \vec{\mathbf{a}}\right }\right) \frac{\vec{\mathbf{a}}}{\left\ \vec{\mathbf{a}}\right\ }$
	$= \left(\frac{\lambda+8}{9}\right) \left(\hat{\mathbf{i}}+2\hat{\mathbf{j}}+2\hat{\mathbf{k}}\right)$
	$\left \vec{a} + \vec{c} \right = 7 \implies \lambda = 4$
	Area of parallelogram
	$= \left \vec{b} \times \vec{c} \right = \left \begin{array}{ccc} \hat{i} & \hat{j} & \hat{k} \\ \frac{4}{3} & \frac{8}{3} & \frac{8}{3} \\ 4 & 0 & 4 \end{array} \right $

= 16

|JEE MAIN 2025 | DATE : 22 JAN 2025 (SHIFT-1) MORNING

