

|JEE MAIN 2025 | DATE : 22 JAN 2025 (SHIFT-1) MORNING CHEMISTRY

SECTION 1

[:Q.51] Match List – I with List – II.

List - I

(A)
$$AI^3 + < Mg^2 + Na^+ < F^-$$

(B)
$$B < C < O < N$$

(C)
$$B < AI < Mg < K$$

(D)
$$Si < P < S < CI$$

List - II

- (I) Ionisation Enthalpy
- (II) Metallic character
- (III) Electronegativity
- (IV) Ionic radii

Choose the **correct** answer from the options given below:

- [:B] (A)-(IV), (B)-(I), (C)-(III), (D)-(II)
- [:C] (A)-(IV), (B)-(I), (C)-(II), (D)-(III)
- [:D] (A)-(III), (B)-(IV), (C)-(II), (D)-(I)

[:ANS]

[:Q.52] From the magnetic behaviour of $[NiCl_4]^{2^-}$ (paramagnetic) and $[Ni(CO)_4]$ (diamagnetic), choose the correct geometry and oxidation state.

[A]
$$\begin{bmatrix} NiCl_4 \end{bmatrix}^{2^-} : Ni^{II}, \text{ square planar} \\ \begin{bmatrix} Ni(CO)_4 \end{bmatrix}^{2^-} : Ni(0), \text{ square planar}$$

[C]
$$\frac{\left[\text{NiCl}_{4}\right]^{2^{-}} : \text{Ni}(0), \text{ tetrahedral}}{\left[\text{Ni}(\text{CO})_{4}\right]^{2^{-}} : \text{Ni}(0), \text{ square planar}}$$

$$[B] \begin{tabular}{l} & \left[NiCI_4 \right]^{2^-} : Ni^{II}, tetrahedral \\ & \left[Ni\left(CO\right)_4 \right]^{2^-} : Ni\left(0\right), tetrahedral \\ \end{tabular}$$

[D]
$$\begin{bmatrix} NiCl_4 \end{bmatrix}^{2^-} : Ni^{II}, \text{ tetrahedral} \\ \left[Ni(CO)_4 \right]^{2^-} : Ni^{II}, \text{ square planar}$$

[:ANS] B

[:SOLN]

$$Ni^{+2} - [Ar] 3d^8 4s^0 \rightarrow sp^3$$
, Tetrahedral

Number of unpaired electron = 2 paramagentic

 $[Ni(CO)_4],$

 $Ni(0) \rightarrow [Ar] 3d^{10} 4s^{0}$

No unpaired electron

sp³, Tetrahedral, Diamagnetic

- [:Q.53] Which of the following electrolyte can be used to obtain $H_2S_2O_8$ by the process of electrolysis?
 - [A] Dilute solution of sulphuric acid
 - [B] Concentrated solution of sulphuric acid
 - [C] Acidified dilute solution of sodium sulphate.
 - [D] Dilute solution of sodium sulphate.

[:Ans]

[2]

- [:Q.54] A vessel at 1000 K contains CO₂ with a pressure of 0.5 atm. Some of CO₂ is converted into CO on addition of graphite. If total pressure at equilibrium is 0.8 atm, then Kp is:
 - [A] 0.3 atm
- [B] 0.18 atm
- [C] 3 atm
- [D] 1.8 atm

[:Ans] D

[:SOLN] The reaction is

$$CO_{2(g)} + C_S \Longrightarrow 2CO_{(g)}$$

$$0.5 - x - 2x$$

$$p_{total} = p_{co_2} + p_{co}$$

$$= 0.5 + x = 0.8$$

$$x = 0.3$$

$$k_p = \frac{2x^2}{0.5 - x} = \frac{\left[2 \times (0.3)\right]^2}{0.5 - 0.3} = 1.8$$

- [:Q.55] Which of the following acids is a vitamin?
 - [A] Ascorbic acid
- [B] Adipic acid
- [C] Saccharic acid
- [D] Aspartic acid

[:Ans] A

[:SoLN] Ascorbic acid is vitamin C

- [:Q.56] Which of the following statement is not true for radioactive decay?
 - [A] Decay constant does not depend upon temperature.
 - [B] Decay constant increases with increase in temperature.
 - [C] Half life is In 2 times of $\frac{1}{\text{rate constant}}$.

[D] Amount of radioactive substance remained after three half live is $\frac{1}{8}$ th of original amount

[:Ans] B

[SOLN] Decay constant is independent of temperature.

[:Q.57] The products formed in the following reaction sequence are

(i)
$$Br_2$$
, $AcOH$

(ii) Sn , HCl

(iii) $NaNO_2$, HCl , 273 K

(iv) C_2H_5OH

[A]
$$OH$$
 CH_3-CHO
 CH_3-CHO

$$[B] \begin{picture}(200,10) \put(0,0){\line(1,0){100}} \put(0,0){\line(1,$$

[:Ans] A [:SoLN]

| JEE MAIN 2025 | DATE : 22 JAN 2025 (SHIFT-1) MORNING

[:Q.58] How many different stereoisomers are possible for the given molecule?

$$CH_3 - CH - CH = CH - CH_3$$

$$OH$$

[A] 2

[B] 4

[C] 4

[D] 3

[:ANS] C

[:SoLN]

[4]

Stereogeric unit 2

Unsymmetrical so, S.I. = 2ⁿ

S. I. =
$$2^2 = 4$$

[:Q.59] A liquid when kept inside a thermally insulated closed vessel at 25°C was mechanically stirred form outside. What will be the correct option for the following thermodynamic parameters?

[A] $\Delta U = 0$, q = 0, w = 0

[B] $\Delta U > 0$, q = 0, w > 0

[C] $\Delta U = 0$, q < 0, w > 0

[D] $\Delta U < 0, q = 0, w > 0$

[:Ans] E

[:SOLN] As the system is thermally insulated, no exchange of heat is allowed.

So, q = 0

According to 1st law of thermodynamics

$$\Delta U = q + w$$

Work done from outside

So,
$$w > 0$$
, $\Delta U > 0$

[:Q.60] The compounds which given positive Fehling's test are:

(C)
$$HOCH_2 - CO - (CHOH)_3 - CH_2 - OH$$

$$\begin{array}{ccc} & & & O \\ \parallel & & \parallel \\ \text{(D)} & & \text{CH}_3 - \text{C-H} \end{array}$$

Choose the **correct** answer from the options given below:

[A] (A), (C) and (D) only

[B] (C), (D) and (E) only

[C] (A), (B) and (C) only

[D] (A), (D) and (E) only

[:Ans] B

[:SoLN] Aliphatic aldehyde

 α – hydroxy aldehyde and ketone gives +ve fehling test.

[:Q.61] Lanthanoid ions with 4f⁷ configuration are:

- (A) Eu²⁺
- (B) Gd³⁺
- (C) Eu³⁺
- (D) Tb³⁺
- (E) Sm²⁺

Choose the correct answer from the options given below:

[A] (A) and (D) only

[B] (A) and (B) only

[C] (B) and (C) only

[D] (B) and (E) only

[:Ans] C [:SOLN]

$$_{63}Eu^{2+} - [Xe] 4f^7 6s^0$$

 $_{64}Gd^{3+} - [Xe] 4f^7 5d^0 6s^0$
 $_{63}Eu^{3+} - [Xe] 4f^6 6s^0$
 $_{65}Tb^{3+} - [Xe] 4f^8 6s^0$
 $_{62}Sm^{2+} - [Xe] 4f^6 6s^0$
 $_{62}Eu^{2+} & Gd^{3+}$

[:Q.62] Which of the following electronegativity order is incorrect?

[A] Mg < Be < B < N

[B] AI < Si < C < N

[C] AI < Mg < B < N

[D] S < CI < O < F

[:Ans] C [:SOLN]

[:Q.63] The **incorrect** statements regarding geometrical isomerism are:

- (A) Propene shows geometrical isomerism.
- (B) Trans isomer has identical atoms/groups on the opposite sides of the double bond.
- (C) Cis-but-2-ene has higher dipole moment than trans-but-2-ene
- (D) 2-methylbut-2-ene shows two geometrical isomers.
- (E) Trans-isomer has lower melting point than cis isomer.

Choose the **correct** answer form the options given below:

[A] (A) and (E) only

[B] (C), (D) and (E) only

[C] (B) and (C) only

[D] (A), (D) and (E) only

[:Ans] D

[:SoLN] (A)
$$CH_3 - CH = CH_2$$
 G.I. not possible

G.I not possible

- (E) Trans is more symmetrically fit in crystal lattice so having high m.p.
- **[:Q.64]** The IUPAC and of the following compound is:

$$\begin{array}{ccc} \mathsf{COOH} & \mathsf{COOH} \\ | & | \\ \mathsf{CH_3} - \mathsf{CH} - \mathsf{CH_2} - \mathsf{CH_2} - \mathsf{CH} - \mathsf{CH_3} \end{array}$$

- Methy1-5-carboxy-2-methylhexanoate.
- [B] 6-Methoxycarbony1-2-5-dimethylhexanoic acid.
- [C] 2-Carboxy-5-methoxycarbony 1hexane.
- [D] Methy1-6-carboxy-2,5-dimethylhexanoate.

[:Ans] В

[:SOLN]

6-Methoxycarbonyl-2,5-dimethyl hexanoic acid.

[:Q.65] Arrange the following solutions in order of their increasing boiling points.

- 10⁻⁴ M NaCl
- (ii) 10⁻⁴ M Urea
- (iii) 10^{-3} M NaCl
- (iv) 10⁻² M NaCl

Options

$$[A] \quad (ii) < (i) < (iii) < (iv)$$

[B] $(ii) < (i) \equiv (iii) < (iv)$

[C]
$$(i) < (ii) < (iii) < (iv)$$

[D] (iv) < (iii) < (i) < (ii)

[:Ans]

[:SOLN] $\Delta T_b = i.k_b.m$

$$T_b^s - T_b^\circ = ik_b.m$$

 $T_h^s \propto i.m$

(i)
$$2 \times 10^{-4}$$

(i)
$$2 \times 10^{-4}$$
 (ii) 1×10^{-4}

(iii)
$$2 \times 10^{-3}$$

(iv)
$$2 \times 10^{-2}$$

[:Q.66] Radius of the first excited state of Helium ion is given as:

 $a_0 \rightarrow radius$ of first stationary state of hydrogen atom.

[A]
$$r = 4a_0$$

[B]
$$r = 2a_0$$

[C]
$$r = \frac{a_0}{4}$$
 [D] $r = \frac{a_0}{2}$

[D]
$$r = \frac{a_0}{2}$$

[:Ans] D

[:SOLN] As we know that
$$r = a_0 \times \frac{n^2}{z} = a_0 \frac{(2)^2}{2} = 2a_0$$

As for first excited state

$$n = 2$$
; He $(z = 2)$

[:Q.67] Given below are two statements:

Statement I : One mole of propyne reacts with excess of sodium to liberate half a mole of H_2 gas

Statement II: Four g of propyne reacts with NaNH₂ to liberate NH₃ gas which occupies 224 mL at STP.

In the light of the above statements, choose the **most appropriate answer** from the options given below:

- [A] Statement I is correct but Statement II is incorrect
- [B] Both Statement I and Statement II are incorrect
- [C] Both Statement I and Statement II are correct
- [D] Statement I is incorrect but Statement II is correct

[:Ans] A

[:SoLN]

$$CH_{3}-C \equiv CH + Na \longrightarrow CH_{3}-C \equiv \stackrel{\bigcirc{C}}{C}Na + \stackrel{1}{2}H_{2} \uparrow$$

$$(ex)$$

$$CH_{3}-C \equiv CH + NaNH_{2} \longrightarrow CH_{3}-C \equiv \stackrel{\bigcirc{C}}{C}Na + \stackrel{1}{2}H_{2} \uparrow$$

$$4g/40=0.1 \text{ mole} \qquad \frac{0.1 \text{ mole}}{2240 \text{ ml}} \text{ at STP liberate}$$

[:Q.68] Given below are two statements:

Statement I: CH₃ - O - CH₂ - CI will undergo S_N1 reaction though it is a primary halide.

 $\begin{array}{c} \mathsf{CH_3} \\ | \\ \mathsf{Statement} \ \, \mathsf{II} : \mathsf{CH_3} - \mathsf{C} - \mathsf{CH_2} - \mathsf{CI} \ \, \mathsf{will} \ \, \mathsf{not} \ \, \mathsf{undergo} \ \, \mathsf{S_N2} \ \, \mathsf{reaction} \ \, \mathsf{very} \ \, \mathsf{easily} \ \, \mathsf{though} \ \, \mathsf{it} \ \, \mathsf{is} \ \, \mathsf{a} \\ | \\ \mathsf{CH_2} \end{array}$

primary halide.

In the light of the above statements, choose the **most appropriate answer** from the options given below:

- [A] Both Statement I and Statement II are incorrect
- [B] Statement I is correct but Statement II is incorrect
- [C] Both Statement I and Statement II are correct

[D] Statement I is incorrect but Statement II is correct

[:Ans] C

[:SOLN] $S_N 1(Rate) \propto stability of carbocation$

$$S_N 2 \big(Rate \big) \propto \frac{1}{steric\ factor}$$

I. Having
$$CH_3 - \overset{\oplus}{\circ} - \overset{\oplus}{C}H_2$$
 highly stable C+. So $S_N 1$ favour

II.having crowding factor so, $S_N 2$ not easily possible.

[:Q.69] A solution of aluminium chloride is electrolysed for 30 minutes using a current of 2A. The amount of the aluminium deposite at the cathode is ______.

[Given: molar mass of aluminium and chloring are 27gmol⁻¹ and 35.5g mol⁻¹ respectively.

Faraday constant = 96500 C mol^{-1}]

[:Ans] A

[:SOLN] No. of gm-equivalent of 'Al' deposited

$$=\frac{\mathrm{lt}}{\mathrm{z}}$$

$$\Rightarrow \frac{w}{27} \times 3 = \frac{2 \times 30 \times 60}{96500}$$

On calculation

W = 0.336 gm

[:Q.70 In which of the following complexes the CFSE, $\Delta_{\rm o}$ will be equal to zero?

$$[A] \quad \Big[\mathsf{Fe} \big(\mathsf{en} \big)_{\!\scriptscriptstyle 3} \, \Big] \mathsf{CI}_{\!\scriptscriptstyle 3}$$

[B]
$$K_4[Fe(CN)_6]$$

$$[C] \quad \mathsf{K_3} \Big[\mathsf{Fe} \big(\mathsf{SCN} \big)_{\! 6} \, \Big]$$

[D]
$$\left[\text{Fe} \left(\text{NH}_3 \right)_6 \right] \text{Br}_2$$

[:Ans] C

[:SOLN]
$$K_3[Fe(SCN)_6]-Fe^{3+},3d^5$$
 $t_{2g}^3-eg^2$

$$\text{CFSE} = 3\left(-0.4\Delta_0\right) + 2\left(0.6\Delta_0\right) = 0\Delta_0$$

SECTION2

[:Q.71] The number of molecules/ions that show linear geometry among the following is _____. SO_2 , $BeCl_2$, CO_2 , N_3^- , NO_2 , F_2O , XeF_2 , NO_2^+ , I_3^- , O_3

[:ANS] 6

[:SOLN] BeCl₂, CO₂,N $_3^-$, XeF₂,NO $_2^+$,I $_3^-$

sp sp sp 3 d sp sp 3 d

[:Q.72] $A \rightarrow B$.

The molecule A changes into its isomeric form B by following a first order kinetics at a temperature of 1000 K. If the energy barrier with respect to reactant energy for such isomeric transformation is 191.48 kJ mol⁻¹ and the frequency factors is 10²⁰, the time required for 50% molecules of A to become B is ______ picoseconds (nearest integer).

$$\left\lceil R = 8.314 \, J \, K^{\scriptscriptstyle -} \, mol^{\scriptscriptstyle -1} \, \right\rceil$$

[:**Ans**] 69.3×10⁻¹²

[:SOLN] For 1st order reaction:

$$t_{1/2} = \frac{0.693}{\text{K}}$$

A/c Arhenius equation:

$$\begin{aligned} k &= A.e^{-Ea/RT} \\ &= 10^{20} \times e^{-23.01} = 10^{10} \text{ sec} \\ k &= 10^{20} \times e^{-\frac{191.48 \times 10^3}{8.314 \times 10^3}} \\ t_{1/2} &= \frac{0.693}{10^{10}} = 69.3 \times 10^{-12} \text{ sec} \end{aligned}$$

[:Q.73] In Carius method for estimation of halogens, 180 mg of an organic compound produced 143.5 mg of AgCl. The percentage composition of chlorine in the compound is ______%

(Given: molar mass gmol⁻¹ of Ag : 108, Cl : 35.5)

[:Ans] 20

[:SoLN]
$$n_{Cl}^- = n_{AgCl} = \frac{143.5 \times 10^{-3}}{143.5} = 10^{-3}$$

$$\%CI^{-} = \frac{10^{-3} \times 35.5}{180 \times 10^{-3}} \times 100 = 19.72\%$$

[:Q.74] Some CO₂ gas was kept in a sealed container at a pressure of 1 atm and 273 K. This entire amount of CO₂ gas was later passed through an aqueous solution of Ca(OH)₂. The excess unreacted Ca(OH)₂ was later neutralized with 0.1 M of 40 mL HCl. If the volume of the sealed container of CO₂ was x, then x is _____ cm³ (nearest integer).

[Given: The entire amount of $CO_2(g)$ reacted with exactly half the initial amount of $Ca(OH)_2$ present in the aqueous solution.]

[:Ans] 44.8 cc

[:SOLN] Let mole of CO₂ taken = n

Mole of $Ca(OH_2)$ taken initially = 2n

Excess of $Ca(OH_2) = n$

(gm - eq) of $Ca(OH_2) = gm - eq$ of HCI

$$n\times 2=0.1\times\frac{40}{1000}\times 1$$

$$n = 2 \times 10^{-3}$$
 mole

Volume of $CO_2 = 2 \times 10^{-3} \times 22400 = 44.8 cc$

[:Q.75] Consider the following sequence of reactions:

(i)
$$Sn + HCI$$

NO₂ (ii) $NaNO_2$, HCI

$$\begin{array}{c}
0^{\circ}C \\
\hline
(iii) Cu_2Cl_2
\end{array}$$
(iv) Na, Ether Product

Molar mass of the product formed (A) is _____ g mol⁻¹.

[:Ans] 154

$$\begin{array}{c}
NO_2 \\
\hline
N=1 \\
\hline
NO_2 \\
\hline
N=1 \\
N=1 \\
\hline
N=1 \\
\hline
N=1 \\
N=1 \\$$

[12]	JEE MAIN 2025 DATE : 22 JAN 2025 (SHIFT-1) MORNING
	Mol. Formula of (4) is C ₁₂ H ₁₀
	$C_{12\times2} + H_{10\times1} = 144 + 10 = 154 g / mol$

