
Do not open this Test Booklet until you are asked to do so.

Important instructions:

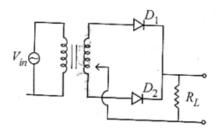
- 1. The Answer Sheet is inside this Test Booklet. When you are directed to open the Test Booklet, take out the Answer Sheet and fill in the particulars on ORIGINAL Copy carefully with blue/black ball point pen only.
- 2. The test is of **3 hours** duration and the Test Booklet contains 180 multiple-choice questions (four options with a single correct answer) from **Physics**, **Chemistry and Biology (Botany and Zoology)**.
- 3. Wherever the symbols/constants are not mentioned, they are to be considered as per their standard meaning/value.
- 4. Each question carries **4 marks**. For each correct response, the candidate will get **4 marks**. For each incorrect response, one mark will be deducted from the total scores. **The maximum marks are 720**.
- 5. Use Blue/Black Ball Point Pen only for writing particulars on this page/marking responses on Answer Sheet.
- 6. Rough work is to be done in the space provided for this purpose in the Test Booklet only.
- 7. On completion of the test, the candidate **must hand over the Answer Sheet (ORIGINAL and OFFICE Copy) to the Invigilator** before leaving the Room/Hall. The candidates are allowed to take away this Test Booklet with them.
- 8. The CODE for this Booklet is "48". Make sure to enter this code in the OMR answer sheet.
- 9. The candidates should ensure that the Answer Sheet is not folded. Do not make any stray marks on the Answer Sheet. Do not write your Roll No. anywhere else except in the specified space in the Test Booklet/Answer Sheet.
- 10. Use of white fluid for correction is NOT permissible on the Answer Sheet.
- 11. Each candidate must show on-demand his/her Admit Card to the Invigilator.
- 12. No candidate, without special permission of the centre Superintendent or Invigilator, would leave his/her seat.
- 13. The candidates should not leave the Examination Hall without handing over their Answer Sheet to the Invigilator on duty and sign (with time) the Attendance Sheet twice. Cases, where a candidate has not signed the Attendance Sheet second time, will be deemed not to have handed over the Answer Sheet and dealt with as an Unfair Means case.
- 14. Use of Electronic/Manual Calculator is prohibited.
- 15. The candidates are governed by all Rules and Regulations of the examination with regard to their conduct in the Examination Room/Hall. All cases of unfair means will be dealt with as per the Rules and Regulations of this examination along with Public Examinations (Prevention of unfair means act 2024).
- 16. No part of the Test Booklet and Answer Sheet shall be detached under any circumstances.
- 17. The candidates will write the Correct Test Booklet Code as given in the Test Booklet/Answer Sheet in the Attendance Sheet.
- 18. If a candidate marks more than one answers for a question in the **OMR Sheet**, it will be treated as incorrect and negative marking will be applicable.

Name of the Ca	ndidate (in Capitals):					
Roll Number	: in figures					
	: in words					
Centre of Exam	ination (in Capitals) :					
Candidate's Sign	Candidate's Signature :					
Facsimile signature stamp of Centre Superintendent :						
Invigilator's Sig	Invigilator's Signature :					

[2]			CODE-48	3		NEET UG_	2025_TEST_04-05-2025		
	FIN		ET UG-202	5 (E	XAMIN	ATION)			
	(Held on 4 th May 2025)								
		TEST I	PAPER WIT	H AN	ISWER K	EY			
			PHYS	SICS					
[Q.1]	charge density arising due to di	on its plate splacement	s is increasing current is :	at a	constant ra	te with time	uch that the surface . The magnetic field I surface connecting		
	(3) zero at all p	en the plates laces	s s and non-zero lates and zero						
[ANS]	1	·			·				
[Q.2]	An electric dipo	le with dipo	le moment 5 >	10 ⁻⁶	Cm is alig	ned with the	direction of uniform		
	electric field of r respect to the el (1) 1.2 J	-	The change in t	he po		y of the dipc	n an angle of 60° with ble is : 1.0 J		
[ANS] [Q.3]		. The impu	-	-			ground and rises to a with the ground is		
	(1) 0	(2) 84	I NS	(3)	21 NS	(4)	7 NS		
[ANS] [Q.4]	3 The intensity of	transmitted	light when a no	laroid	sheet nlace	d hetween t	wo crossed polaroids		
[מ.ד]	-	e polarizatio	n axis of one of		-		nsity of polarized light		
	(1)	(2) $\frac{I_0}{10}$	6	(3)	Ι ₀ 2	(4)	<u>l₀</u> 4		
[ANS] [Q.5]	1 The kinetic energies of two similar cars A and B are 100 J and 225 J respectively. On applying breaks, car A stops after 1000 m and car B stops after 1500 m. If F_A and F_B are the forces applied by the breaks on cars A and B, respectively, then the ratio F_A/F_B is								
	1								
[ANS]	(1) $\frac{1}{3}$	(2) $\frac{1}{2}$		(3)	2	(4)	$\frac{2}{3}$		

5	V.	-	ET		- 7	n	ы	-		1.1	n	Z –	n	7	ъ	
				•									•	~	10	

[Q.9]	AB is a part of an ele	ectrical circuit (see fi	gure) The potential diff	erence "V _A – V _B ", at the
[[4.5]	-		at a rate of 1 amp/seco	
	A	111	₩ 5V 2Ω	
	(1) 9 volt (2	2) 10 volt	(3) 5 volt	(4) 6 volt
[ANS]	2			
[Q.10]		-	-	ce F pulling it towards the
	-			of the n th orbit and the
	particle's speed v in the	e orbit depend on n as		
	(1) $r \propto n^{2/3}; v \propto n^{1/3}$		(2) $\mathbf{r} \propto \mathbf{n}^{4/3}$; $\mathbf{v} \propto \mathbf{n}^{-1/3}$ (4) $\mathbf{r} \propto \mathbf{n}^{1/3}$; $\mathbf{v} \propto \mathbf{n}^{2/3}$	
	(3) $r \propto n^{1/3}$; $v \propto n^{1/3}$		(4) $\mathbf{r} \propto \mathbf{n}^{1/3}$; $\mathbf{v} \propto \mathbf{n}^{2/3}$	
[ANS]	1			
[Q.11]			tion (x) relation of a mov	ing particle is given by t =
	$t = x^2 + x$ The accelera		0	0
	(1) $+\frac{2}{(x+1)^3}$ (2)	$(2) + \frac{2}{2x+1}$	(3) $-\frac{2}{(x+2)^3}$	$(4) -\frac{2}{(2x+1)^3}$
[ANS]	4			
[Q.12]	-		-	field B states that the flux
				an integer, h is Planck's
			n's charge. According to tate will be (m is the mas	the model, the magnetic
	heB	heB	he	he
	(1) $\frac{\pi m}{\pi m}$ (2)	$\frac{2}{2\pi m}$	(3) $\frac{\pi \sigma}{\pi m}$	(4) $\frac{1}{2\pi m}$
[ANS]	4			
[Q.13]				ocal length 4 cm and the
	tube length of 40 cm. If microscope is	the distance of distin	ct vision of eye is 25 cm	, the magnification in the
		2) 250	(3) 100	(4) 125
[ANS]	4	,		、 /
[Q.14]	There are two inclined	surfaces of equal len	ngth (L) and same angle	of inclination 45° with the
		-		given body takes 2 times
		-		surface. The coefficient of
			the rough surface is clos	
[ANS]	(1) 0.5 (2 2	2) 0.75	(3) 0.25	(4) 0.40
	L			


CODE-48

[4]

NEET UG_2025_TEST_04-05-2025

CODE-48

[Q.15] A full wave rectifier circuit with diodes (D₁) and (D₂) is shown in the figure. If input supply voltage $V_{in} = 220 \sin (100\pi t)$ volt, then at t = 15 msec

- (1) D_1 and D_2 both are forward biased
- (2) D_1 and D_2 both are reverse biased
- (3) D_1 is forward biased, D_2 is reverse biased
- (4) D_1 is reverse biased, D_2 is forward biased

[ANS]

4

- **[Q.16]** A uniform rod of mass 20 kg and length 5 m leans against a smooth vertical wall making an angle 60° with it. The other end rests on a rough horizontal floor. The friction force that the floor exerts on the rod is (take g = $10m/s^2$)
 - (1) 200 N (2) $200\sqrt{3}$ N (3) 100 N (4) $100\sqrt{3}$ N
- [ANS] 4
- [Q.17] Two identical charged conducting spheres A and B have their centres separated by a certain distance. Charge on each sphere is q and the force of repulsion between them is F. A third identical uncharged conducting sphere is brought in contact with sphere A first and then with B and finally removed from both. New force of repulsion between spheres A and B (Radii of A and B are negligible compared to the distance of separation so that for calculating force between them they can be considered as point charges) is best given as:

(1)
$$\frac{F}{2}$$
 (2) $\frac{3F}{8}$ (3) $\frac{3F}{5}$ (4) $\frac{2F}{3}$

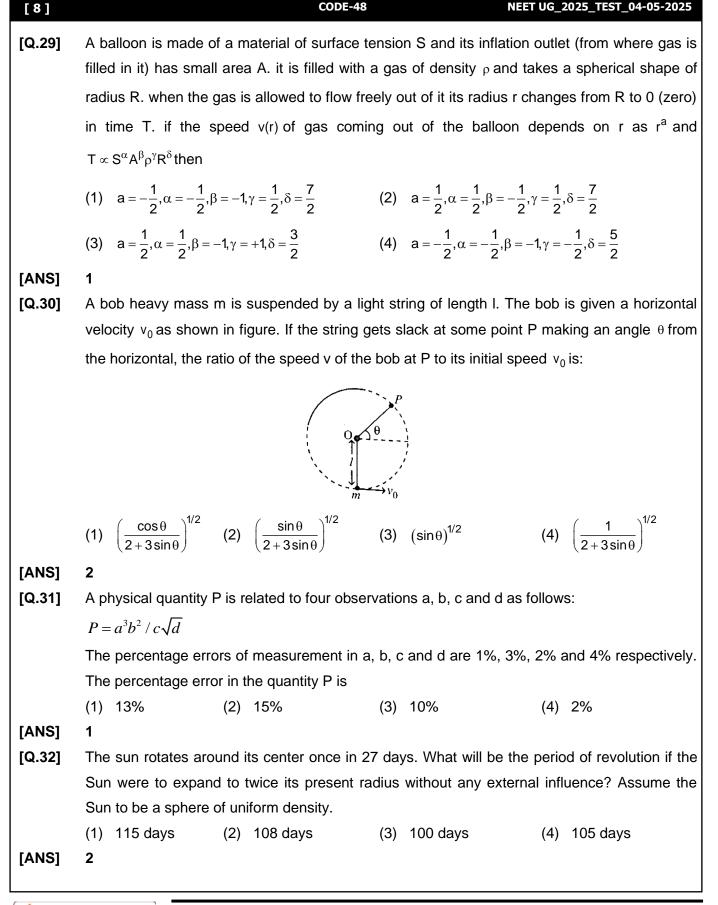
[ANS] 2

[ANS]

2

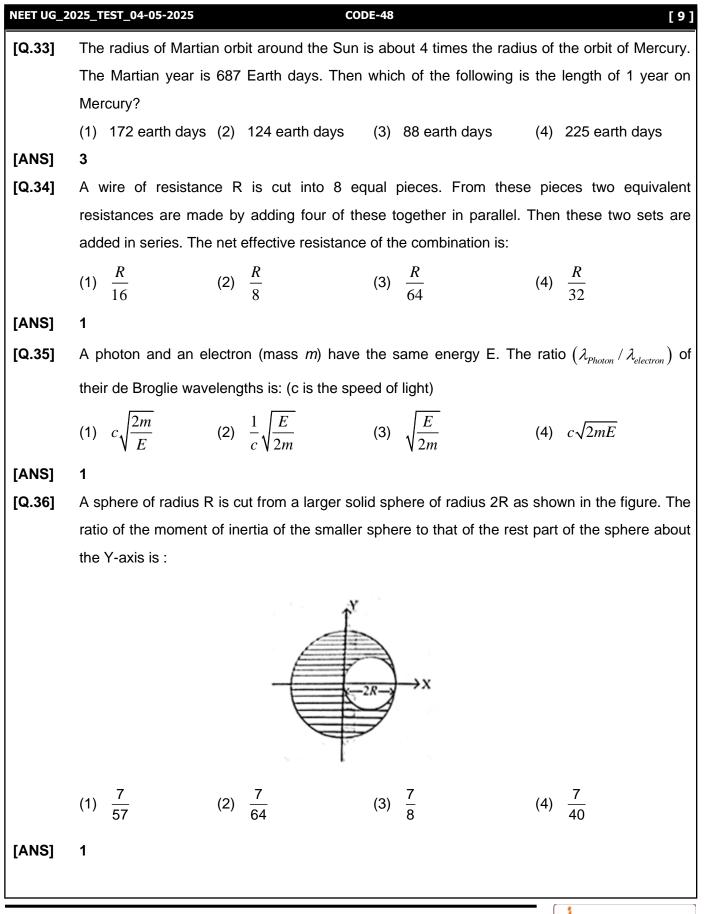
- [Q.18] Two cities X and Y are connected by a regular bus service with a bus leaving in either direction every T min. A girl is driving scooty with a speed of 60 km/h in the direction X to Y notices that a bus goes past her every 30 minutes in the direction of her motion, and every 10 minutes in the opposite direction. Choose the correct options for the period T of the bus service and the speed (assumed constant) of the buses.
 - (1) 10 min, 90 km/h
 - (3) 9 min, 40 km/h

- (2) 15 min, 120 km/h
- (4) 25 min, 100 km/h


[6]		CODE-48		NE	ET UG_2	2025_TEST_04-05-2025
[Q.19]	partition made of a t	o chambers of volume thermal insulator. The c = 1 atm and $p_2 = 2$ atm	hamb	pers contains n1 = 5	5 and 1	$n_2 = 4$ moles of ideal
	mixture attains an e	quilibrium pressure of:				
	(1) 1.4 atm	(2) 1.8 atm	(3)	1.3 atm	(4)	1.6 atm
[ANS]	4					
[Q.20]	De-Broglie wavelen	gth of an electron orbiti	ng in	the $n = 2$ state of	hydro	gen atom is close to
	(Given Bohr radius =	= 0.052 nm)				
	(1) 1.67 nm	(2) 2.67 nm	(3)	0.067 nm	(4)	0.67 nm
[ANS]	4					
[Q.21]	To an ac power sup	oply of 220 V at 50 Hz,	a re	sistor of 20 Ω , a ca	apacito	or of reactance 25Ω
	and an inductor of r	eactance 45Ω are con	necte	d in series. The co	orrespo	onding current in the
	circuit and the phase	e angle between the cur	rent a	and the voltage is. I	respec	tivelv -
	·	(2) 15.6 A and 45°		7.8 A and 30°	•	7.8 A and 45°
[ANS]	4	(_)	(-)			
[Q.22]		ng options represent the	e vari	iation of photoelect	ric cur	rent with property of
[<]	light shown on the x	• • •	o van			font man property of
	· · · · · · · · · · · · · · · · · · ·	axis:		\wedge		
	A. Duotoclectric O current Intensity	of light	В.	Division of the second	light	- >
	C. Or C.	of light	D.	Bhotoclectric O current Prednency of	- light	
	(1) A and D	(2) B and D	(3)	A only	(4)	A and C
[ANS]	3					
[Q.23]		h ends has a fundame drum to half of its lengt				
	(1) $\frac{3f}{2}$	(2) 2f	(3)	$\frac{f}{2}$	(4)	f
[ANS]	4					
Mentor	s <mark>E</mark> duserv [®]	Mentors Eduserv: Parı Helpline No.		Complex, Boring Ro 59668800 7544015		

NEET UG_2025_TEST_04-05-2025

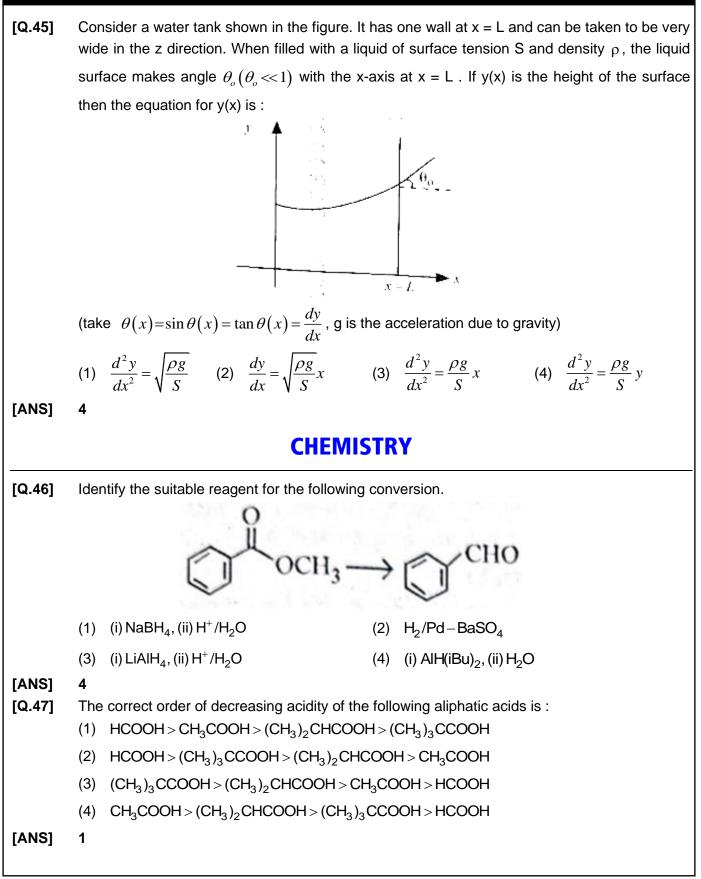
CODE-48


[Q.24]	-		-	separate massless springs o
	spring constants k	$_1$ and k_2 , respectivel	y, oscillate vertically. If	their maximum speeds are the
	same, the ratio (A	$_{\sf Q}$ / ${\sf A}_{\sf P}$) of the ampli	tude A _Q of mass Q to the	e amplitude A _P of mass P is :
	(1) $\sqrt{\frac{k_2}{k_1}}$	(2) $\sqrt{\frac{k_1}{k_2}}$	(3) $\frac{k_2}{k_1}$	(4) $\frac{k_1}{k_2}$
[ANS]	2			
[Q.25]	The output (Y) of the	ne given logic impler	mentation is similar to the	e output of an/a gate.
[ANG]	(1) OR 2	(2) NOR	(3) AND	(4) NAND
[ANS] [Q.26]	An oxygen cylinde withdrawn from tl	ne cylinder, its ga	uge pressure drops to	oxygen. After some oxygen is 11 atmospheric pressure a cylinder is nearly equal to:
	[Given, $R = \frac{100}{12}$ Jm	$ol^{-1}K^{-1}$, and molecul	ar mass of $O_2 = 32, 1$ at	m pressure =1.01×10 ⁵ N/m]
	(1) 0.116 kg	(2) 0.156 kg	(3) 0.125 kg	(4) 0.144 kg
[ANS]	1			
[Q.27]	contact. Then the	power of the combin		lenses are arranged axially in Inification in comparison to the ely-
	(1) 4p, and m ⁴	(2) p^4 and m^4	(3) 4p and 4m	(4) p ⁴ and 4m
[ANS]	1			
[Q.28]	-			cylinders with movable pistons nt of heat to both the systems
	reversibly under co	onstat pressure, the	pistons of gas A and B	are displaced by 16 cm and 9
	cm, respectively. If	the change in their	internal energy is the sa	ame, then the ratio $\frac{r_A}{r_B}$ is equa
	to			_
	(1) $\frac{2}{\sqrt{3}}$	(2) $\frac{\sqrt{3}}{2}$	(3) $\frac{4}{3}$	(4) $\frac{3}{4}$
[ANS]	4			
		us Lok Complex, Borin :9569668800 7544	ig Road Crossing, Patna-1 4015993/4/6/7	Mentors Eduserv

[7]

CODE-48

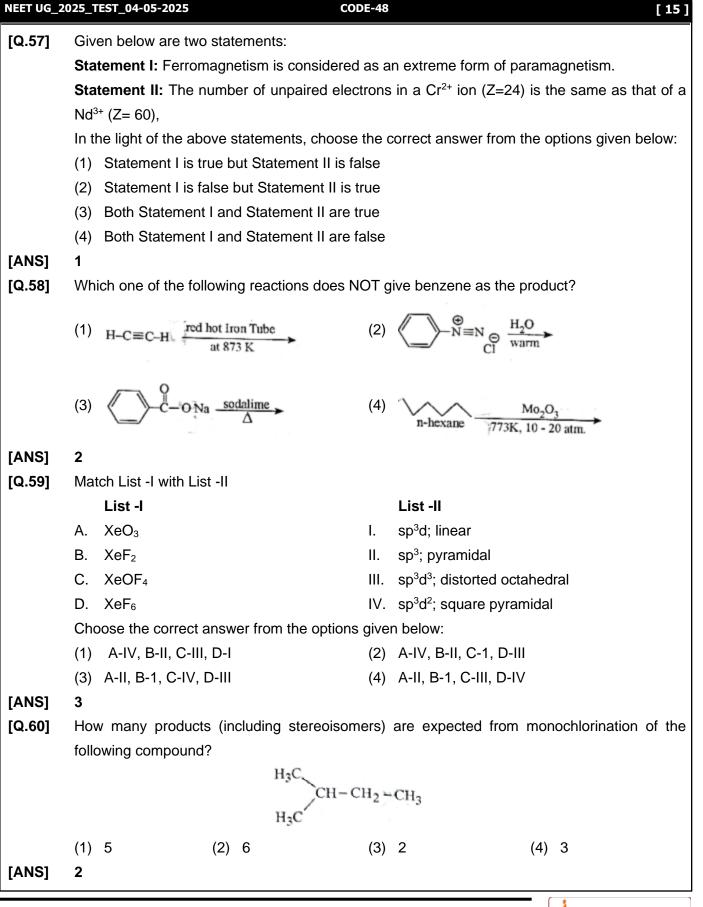
Mentors Eduserv



[10]	CODE-48 NEET UG_2025_TEST_04-05-2025					
[Q.37]	An electron (mass 9×10^{-31} and charge 1.6×10^{-19} C) moving with speed c/100 (c = speed					
	of light) in injected into a magnetic field \vec{B} of magnitude 9×10^{-4} T perpendicular to its					
	direction of motion. We wish to apply an uniform electric field \vec{E} together with the magnetic field so that the electron does not deflect from its path. Then (speed of the light $c = 3 \times 10^8 \text{ ms}^{-1}$)					
	(1) \vec{E} is parallel to \vec{B} and its magnitude is 27 × 10 ² V m ⁻¹					
	(2) \vec{E} is parallel to \vec{B} and its magnitude is 27 × 10 ⁴ V m ⁻¹					
	(3) \vec{E} is perpendicular to \vec{B} and its magnitude is 27 × 10 ⁴ V m ⁻¹					
	(4) \vec{E} is perpendicular to \vec{B} and its magnitude is 27 × 10 ² V m ⁻¹					
[ANS]	4					
[Q.38]	The electric field in a plane electromagnetic wave is given by					
	$E_z = 60 \cos (5x + 1.5 \times 10^9 t) V/m.$					
	Then expression for the corresponding magnetic field is (here subscript denote the direction of the field) :					
	(1) $B_z = 60 \cos (5x + 1.5 \times 10^9 t)T$ (2) $B_y = 60 \sin (5x + 1.5 \times 10^9 t)T$					
	(3) $B_y = 2 \times 10^{-7} \cos(5x + 1.5 \times 10^9 t)T$ (4) $B_x = 2 \times 10^{-7} \cos(5x + 1.5 \times 10^9 t)T$					
[ANS]	3					
[Q.39]	A body weighs 48 N of the surface of the earth. The gravitational force experienced by the body due to the earth at a height equal to one-third the radius of the earth from its surface is					
	(1) 32 N (2) 36 N (3) 16 N (4) 27 N					
[ANS]	4					
[Q.40]	An unpolarized light beam travelling in air is incident on a medium of refractive index 1.73 at Brewster's angle. Then					
	 both reflected and transmitted light are perfectly polarized with angles of reflection and refraction close to 60° and 30°, respectively. 					
	(2) transmitted light is completely polarized with angle of refraction closed to 30°.					
	(3) reflected light is completely polarized and the angle of reflection is close to 60°.					
	(4) reflected light is partially polarized and the angle of reflection is close to 30°					
[ANS]	3					

NEET UG_2	2025_TEST_04-05-20	25	CODE-48	[11]
[Q.41]	A constant volta	age of 50V is maintaine	d between the points A	and B of the circuit shown in the
	figure. The curr	ent through the branch	CD of the circuit is :	
				B
	(1) 2.5 A	(2) 3.0 A	(3) 1.5 A	(4) 2.0 A
[ANS]	4			
[Q.42]	The plates of a	a parallel plate capacite	or are separated by d.	Two slabs of different dielectric
	constant K1 and	d K2 with thickness $\frac{3}{8}a$	d and $\frac{d}{2}$, respectively a	re inserted in the capacitor. Due
	to this, the cap	pacitance becomes two	times larger than whe	n there is nothing between the
	plates. If $K_1 = 1$.25 K_2 , the value of K_1	is :	
	(1) 1.60	(2) 1.33	(3) 2.66	(4) 2.33
[ANS]	3			
[Q.43]	callipers. Supp	ose its 10 Vernier So	cale Divisions (V.S.D.)	red with the help of a Vernier are equal to its 9 Main Scale and the zero of V.S. is at $x = 0.1$
		ws of Vernier callipers		
	-			he number of coinciding vernier
		-	fter zero error correction	-
	(1) 4.98 cm	(2) 5.00 cm	(3) 5.18 cm	(4) 5.08 cm
[ANS]	1			
[Q.44]	A 2 amp curren	t is flowing through two	different small circular o	copper coils having radii ratio 1 :
	2. The ratio of t	heir respective magnet	ic moments will be	
	(1) 2:1	(2) 4:1	(3) 1:4	(4) 1:2
[ANS]	3			

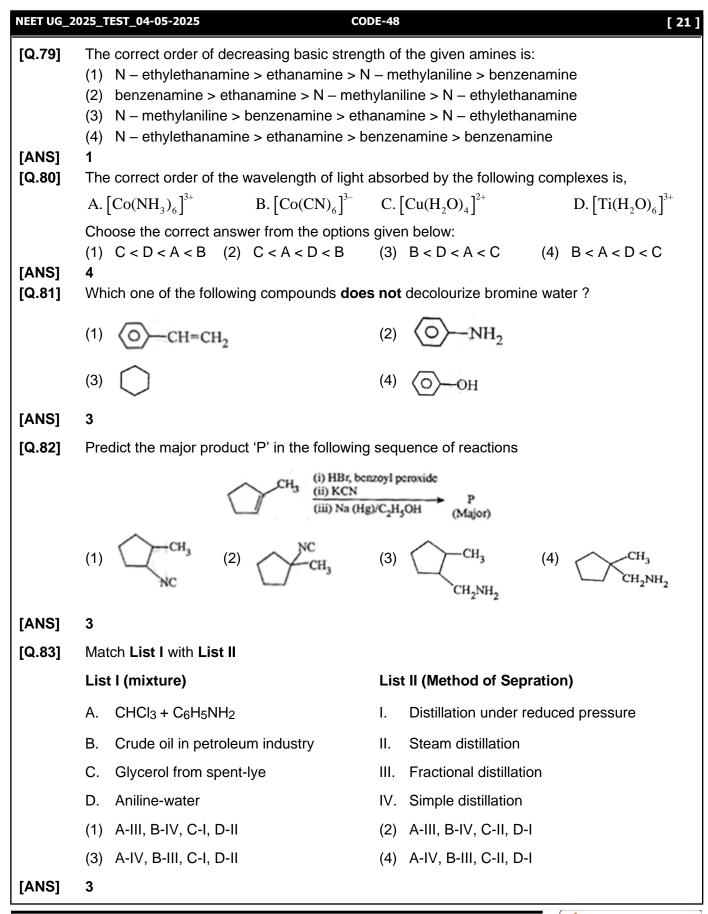
CODE-48


[12]

NEET UG_2	025_TEST_04-05-2025 CODE-48 [13]						
[Q.48]	Which one of the following reactions does NOT belong to "Lassaigne's test" ?						
	(1) $Na + X \xrightarrow{\Delta} + NaX$ (2) $2CuO + C \xrightarrow{\Delta} 2Cu + CO_2$						
	(3) $Na + C + N \xrightarrow{\Delta} NaCN$ (4) $2Na + S \xrightarrow{\Delta} Na_2S$						
[ANS]	2						
[Q.49]	If the rate constant of a reaction is 0.03 s ⁻¹ , how much time does it take for 7.2 mol L^{-1}						
	concentration of the reactant to get reduced to 0.9 mol L^{-1} ? (Given : log 2 = 0.301)						
	(1) 210 s (2) 21.0 s (3) 69.3 s (4) 23.1 s						
[ANS]	3						
[Q.50]	Given below are two statements :						
	Statement-I: A hypothetical diatomic molecule with bond order zero is quite stable.						
	Statement-II : As bond order increases, the bond length increases.						
	In the light of the above statements, choose the most appropriate answer from the options						
	given below :						
	(1) Statement-I is true but Statement-II is false(2) Statement-I is false but Statement-II is true						
	(3) Both Statement-I and Statement-II are true						
	(4) Both Statement-I and Statement-II are false						
[ANS]	4						
[Q.51]	Out of the following complex compounds, which of the compound will be having the minimum						
	conductance in solution ?						
	(1) $\left[Co(NH_3)_6 \right] Cl_3$ (2) $\left[Co(NH_3)_5 Cl \right] Cl$						
	(3) $\left[Co(NH_3)_3 CI_3 \right]$ (4) $\left[Co(NH_3)_4 CI_2 \right]$						
[ANS]	BONUS						
[Q.52]	Which of the following aqueous solution will exhibit highest boiling point ?						
	(1) 0.01 M Na ₂ SO ₄ (2) 0.015 M C ₆ H ₁₂ O ₆						
	(3) 0.01 M Urea (4) 0.01 M KNO3						
[ANS]	1						

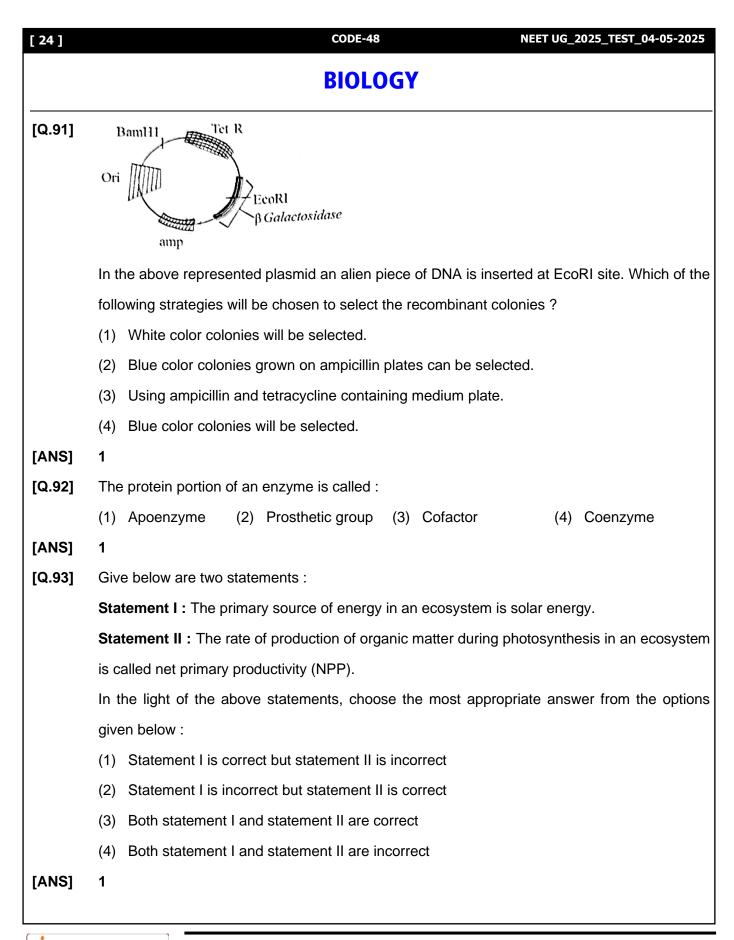
[14]	COL	-48 NEET U	G_2025_TEST_04-05-2025					
[Q.53]	Given below are two statements : one i	labelled as Assertion (A) and	the other is labelled as					
	Reason (R).							
	Assertion (A) : $\$ I undergoes S _N 2 reaction faster then $\$ Cl.							
	Reason (R) : lodine is a better leaving	roup because of its large size.						
	In the light of the above statements, ch	ose the correct answer from th	e options given below:					
	(1) A is true but R is false							
	(2) A is false but R is true							
	(3) Both A and R are true and R is the(4) Both A and R are true but R is not	•						
[ANS]	3							
[Q.54]	Consider the following compounds :							
	<u>K</u> O ₂ , H ₂ O ₂ and H ₂ SO ₄ .							
	The oxidation states of the underlined e	ements in them are, respective	ly.					
	(1) +1, -2, and +4 (2) +4, -4, and +	•	•					
[ANS]	3							
[Q.55]	Match List – I with List – II							
	List – I	List – II						
	A. Haber process	I. Fe catalyst						
	B. Wacker oxidation	II. PdCl ₂						
	C. Wilkinson Catalyst	III. [(PPh ₃) ₃ RhCl]						
	D. Ziegler catalyst	IV. TiCl ₄ with Al(CH ₃) ₃						
	Choose the correct answer from the op	ions given below :						
	(1) A-I, B-II, C-III, D-IV							
	(3) A-I, B-II, C-IV, D-III	(4) A-II, B-III, C-I, D-IV						
[ANS] [Q.56]	1 Given below are two statements:							
	Statement I: Like nitrogen that can forr	ammonia. arsenic can form ar	sine.					
	Statement II: Antimony cannot form an							
	In the light of the above statements,	noose the most appropriate ar	nswer from the options					
	given below:							
	(1) Statement I is correct but Stateme							
	(2) Statement I is incorrect but Statem							
	(3) Both Statement I and Statement II(4) Both Statement I and Statement II							
[ANS]	(4) Both Statement I and Statement II1							
	1							

[16]	CODE-48	NEET UG_2025_TEST_04-05-2025					
[Q.61]	Which of the following statements are true?						
	A. Unlike Ga that has a very high melting point, Cs has very low melting point.						
	B. On Pauling scale, the electronegativity value	es of N and CI are not the same.					
	C. Ar, K^+ , Cl^- , Ca^{2+} , and S^{2-} are all isoelectronic	species.					
	D. The correct order of the first ionizatio	n enthalpies of Na, Mg, Al and Si is					
	Si > Al > Mg > Na.						
	E. The atomic radius of Cs is greater than that	of Li and Rb.					
	Choose the correct answer from the options give	n below:					
	(1) C and D only (2)	A, C and E only					
	(3) A, B, and E only (4)	C and E only					
[ANS]	4						
[Q.62]	The standard heat of formation, in kcal/mol of B	Ba ²⁺ is: [Given : standard heat of formation of					
	SO_4^{2-} ion (aq) = -216 kcal/mol, standard heat of	crystallization of $BaSO_4(s) = -4.5$ kcal/mol,					
	standard heat of formation of BaSO ₄ (s) = -349 k	cal/mol]					
		+ 220.5					
	(3) - 128.5 (4)	– 133.0					
[ANS]	3						
[Q.63]	Match List-I with List-II						
	(List-I)	List-II					
	(Example) (Ty	pe of Solution)					
	A. Humidity I.	Solid in solid					
	B. Alloys II.	Liquid in gas					
	C. Amalgams III.	Solid in gas					
	D. Smole IV.	Liquid in solid					
	Choose the correct answer form the options give	n below:					
	(1) A-III, B-I, C-IV, D-II (2)	A-III, B-II, C-I, D-IV					
	(3) A-II, B-IV, C-I, D-III (4)	A-II, B-I, C-IV, D-III					
[ANS]	4						


NEET UG_2	025_TEST_04-05-2025	CO	DE-48	[17]
[Q.64]	$C(s) + 2H_2(g) \rightarrow CH$	$H_4(g); \Delta H = -74.8 \text{ kJ mo}$	I ⁻¹ Which of the	following diagrams gives an
	accurate representa	tion of the above reacti	on? [R \rightarrow reactants	s; $P \rightarrow products]$
	(1) $\begin{array}{c} \text{Energy} \\ (kJ \text{ mol}^{-1}) \\ \uparrow \\ \text{R} \\ \text{R} \\ \text{Reac} \end{array}$	74.8 P etion progress	$(2) \xrightarrow{\text{Energy}} (k \text{J mol}^{-1}) \xrightarrow{Re}$	$\frac{P}{174.8}$
	(3) $\begin{array}{c} \text{Energy} \\ (kJ \text{ mol}^{-1}) \\ \hline \\ 74 \\ \hline \\ \hline \\ Reaction \\ \hline \\ Reaction \\ \hline \\ \end{array}$	$8 \uparrow P$	$(4) \qquad \begin{array}{c} \operatorname{Energy} \\ (kJ \operatorname{mol}^{-1}) \\ & & & \\ & $	$R \longrightarrow \frac{P}{74.8}$
[ANS]	3			
[Q.65]	Sugar 'X'			
	A. is found in hone	ey.		
	B. is a keto sugar.			
		β -anomeric forms.		
	D. is leavorotatory 'X' is :			
	(1) Maltose	(2) Sucrose	(3) D-Glucose	(4) D-Fructose
[ANS]	4	(_)	(-)	()
[Q.66]	Total number of pos molecular formula C		uctural as well as st	tereoisomers) of cyclic ethers of
	(1) 10	(2) 11	(3) 6	(4) 8
[ANS]	1			
[Q.67]	For the reaction A	$(g) \rightleftharpoons 2B(g)$, the bac	ckward reaction ra	te constant is higher than the
	forward reaction rate	e constant by a factor o	f 2500, at 1000 K.	
	[Given : R = 0.0831	L atm_mol ^{_1} K ^{_1}]_K _P fo	r the reaction at 100	00 K is
	(1) 0.033	(2) 0.021	(3) 83.1	(4) 2.077×10 ⁵
[ANS]	1			
[Q.68]		elengths of the light ab \rightarrow n = 6 transitions, res		gen atom when it undergoes n =
	(1) $\frac{1}{9}$	(2) $\frac{1}{4}$	(3) $\frac{1}{36}$	(4) $\frac{1}{16}$
[ANS]	2	-		
		5 Lok Complex, Boring Ro 9569668800 7544015		Hentors Eduserv [®]

[18]	CODE-48 NEET UG_2025_TEST_04-05-2025									
[Q.69]	If the molar conductivity ($\wedge_{ m m}$) of a 0.050 mol L $^{-1}$ solution of a monobasic weak acid is 90 S									
	$cm^2 mol^{-1}$, its extent (degree) of dissociation will be									
	[Assume $\wedge^{o}_{+} = 349.6 \text{ s cm}^2 \text{mol}^{-1}$ and $\wedge^{o}_{-} = 50.4 \text{ s cm}^2 \text{mol}^{-1}$]									
	(1) 0.225 (2) 0.215 (3) 0.115 (4) 0.125									
[ANS]	1									
[Q.70]	5 moles of liquid X and 10 moles of liquid Y make a solution having a vapour pressure of 70									
	torr. The vapour pressures of pure X and Y are 63 torr and 78 torr respectively. Which of the									
	following is true regarding the described solution?									
	(1) The solution is ideal.									
	 (2) The solution has volume greater than the sum of individual volumes. (2) The solution shows positive deviation. 									
	(3) The solution shows positive deviation.(4) The solution shows negative deviation.									
[ANS]	4									
[Q.71]	Among the following, choose the ones with equal number of atoms.									
	A. 212 g of $Na_2CO_3(s)$ [molar mass = 106 g]									
	B. 248 g of $Na_2O(s)$ [molar mass = 62 g]									
	C. 240 g of NaOH NaOH(s) [molar mass = 40 g]									
	D. 12 g of $H_2(g)$ [molar mass = 2 g]									
	E. 220 g of $CO_2(g)$ [molar mass = 44 g]									
	Choose the correct answer from the options given below:									
	(1) B,C, and D only (2) B,D, and E only									
	(3) A,B, and C only (4) A,B, and D only									
[ANS]	4									
[Q.72]	Which of the following are paramagnetic?									
	A. $[NiCl_4]^{2-}$ B. $Ni(CO)_4$ C. $[Ni(CN)_4]^{2-}$									
	D. $\left[Ni(H_2O)_6\right]^{2+}$ E. $Ni(PPh_3)_4$									
	Choose the correct answer from the options given below:									
	(1) A and D only (2) A, D and E only									
	(3) A and C only (4) B and E only									
[ANS]	1									

NEET UG_2	025_T	_TEST_04-05-2025 CODE-48				[19]
[Q.73]	lf th	the half-life $(t_{1/2})$ for a first order reaction is 1 minute, the	en the	time	required for	99.9%
	con	mpletion of the reaction is closest to:				
	(1)) 5 minutes (2) 10 minutes (3) 2 minutes		(4)	4 minutes	
[ANS]	2					
[Q.74]	Ene	nergy and radius of first Bohr orbit of He^+ and Li^{2+} are				
	[Giv	iven $R_H = 2.18 \times 10^{-18} J$, $a_0 = 52.9 pm$]				
	(1)) $E_n(Li^{2+}) = -19.62 \times 10^{-16} J;$				
		$r_n(Li^{2+}) = 17.6 \text{ pm}$				
		$E_n(He^+) = -8.72 \times 10^{-16} J;$				
		$r_{n}(He^{+}) = 26.4 \text{ pm}$				
	(2)) $E_n(Li^{2+}) = -8.72 \times 10^{-16} J;$				
		$r_{n}(Li^{2+}) = 17.6 \text{ pm}$				
		$E_n(He^+) = -19.62 \times 10^{-16} \text{ J};$				
		$r_{n}(He^{+}) = 17.6 \text{pm}$				
	(2)) $E_n(Li^{2+}) = -19.62 \times 10^{-18} \text{ J};$				
	(3)					
		$r_n(Li^{2+}) = 17.6 \text{ pm}$				
		$E_n(He^+) = -8.72 \times 10^{-18} J;$				
		$r_n(He^+) = 26.4 \text{ pm}$				
	(4)) $E_n(Li^{2+}) = -8.72 \times 10^{-18} J;$				
		$r_n(Li^{2+}) = 26.4 pm$				
		$E_n(He^+) = -19.62 \times 10^{-18} J;$				
		$r_{n}(He^{+}) = 17.6 pm$				
[ANS]	3					


[20]	CODE-	-48 NEET UG_2025_TEST_04-05-2025							
[Q.75]	Among the given compounds I-III, the co	prrect order of bond dissociation energy of C–H bond							
	marked with * is:								
	(1) > > (2) > >	(3) > > (4) > >							
[ANS]	3								
[Q.76]	Dalton's Atomic theory could not explain v								
	(1) Law of multiple proportion	(2) Law of gaseous volume							
TANCI	(3) Law of conservation of mass	(4) Law of constant proportion							
[ANS] [Q.77]	2	nerty mentioned							
[@.//]		dentify the correct orders against the property mentioned							
	A. $H_2O > NH_3 > CHCI_3$ — Dipole momentum distribution of the second secon								
	B. $XeF_4 > XeO_3 > XeF_2$ — Number of I								
	C. $O - H > C - H > N - O - Bond leng$	gth							
	D. $N_2 > O_2 > H_2$ — Bond enthalpy								
	Choose the correct answer from the optic	-							
	(1) A, C only (2) B, C only	(3) A, D only (4) B, D only							
[ANS]	3 Martak I (art havith I (art II								
[Q.78]	Match List I with List II. List I (Number of Vitamin)	List II (Deficiency disease)							
		I. Cheilosis							
		II. Convulsions							
	C. Vitamin B ₂	III. Rickets							
	D. Vitamin B ₆	IV. Pernicious anaemia							
	Choose the correct answer from the optio	·							
	(1) $A - II, B - III, C - I, D - IV$	(2) $A - IV, B - III, C - II, D - I$							
LUNGI	(3) A – I, B – III, C – II, D - IV	(4) A – IV, B – III, C – I, D - II							
[ANS]	4								

[22]				CODE-48		NEET UG_2025_TEST_04-05-2025
[Q.84]	Wh	ich among the fo	llowi	ng electronic config	guratio	ons belong to main group elements ?
	A.	[Ne]3s ¹	В.	[Ar]3d ³ 4s ²	C.	[Kr]4d ¹⁰ 5s ² 5p ⁵
	D.	[Ar]3d ¹⁰ 4s ¹	E.	[Rn]5f ⁰ 6d ² 7s ²		
	Cho	oose the correct	answ	ver from the option	given	below :
	(1)	D and E only	(2)	A, C and D only	(3)	B and E only (4) A and C only
[ANS]	4					
[Q.85]	Wh	ich one of the fol	lowir	ng compounds can	exist	as cis-trans isomers ?
	(1)	1, 1-Dimethylcy	clop	ropane	(2)	1, 2-Dimethylcyclohexane
	(3)	Pent-1-ene			(4)	2-Methylhex-2-ene
[ANS]	2					
[Q.86]	Pho	osphoric acid ion	izes i	n three steps with	their i	onization constant values
	K_{a_1}	, K_{a_2} and K_{a_3} , resp	pectiv	vely,		
					hich (of the following statements are true?
	Α.	$\log K = \log K_{a_1} +$		2 0		
			nger	acid than $H_2PO_4^-$ a	ind H	PO ₄ ²⁻
		$K_{a_1} > K_{a_2} > K_{a_3}$				
	D.	$K_{a_1} = \frac{K_{a_3} + K_{a_2}}{2}$				
	Cho	oose the correct	answ	ver from the options	s givei	n below :
		B, C and D only	/			A, B and C only
[ANS]	(3) 2	A and B only,			(4)	A and C only
[Q.87]		tch List I with Lis	t II			
	Lis	t I			List	: 11
	(lor	ר)		(Group Nur	nber	in Cation Analysis)
	Α.	Co ²⁺			I.	Group -I
	В.	Mg ²⁺			II.	Group – III
	C.	Pb ²⁺			III.	Group-IV
		Al ³⁺		6 - 11 - 11		Group- VI
				er from the options	•	
	(1)	A-III, B-II, C-IV, A-III, B-IV, C-II,			. ,	A-III, B-II, C-I, D-IV A-III, B-IV, C-I, D-II
[ANS]	(3) 4	Λ-III, D-IV, U-II,	ו-ט		(4)	אייט, אי

NEET UG_2	2025_TEST_04-05-2025 CODE-48 [23]
[Q.88]	Higher yield of NO in
	$N_2(g)+O_2(g) \Longrightarrow 2NO(g)$ can be obtained at
	$[\Delta H \text{ of the reaction} = + 180.7 \text{ kJ mol}^{-1}]$
	A. higher temperature B. lower temperature
	C. higher concentration of N_2 D. higher concentration of O_2
	Choose the correct answer from the options given below :
	(1) B, C, D only (2) A, C, D only (3) A, D only (4) B, C only
[ANS]	2
[Q.89]	Given below are two statements :
	Statement I: Benzenediazonium salt is prepared by the reaction of aniline with nitrous acid at
	273-278 K. It decomposes easily in the dry state.
	Statement II : Insertion of iodine into the benzene ring is difficult and hence iodobenzene is
	prepared through the reaction of benzenediazonium salt with KI.
	In the light of the above statements, choose the most appropriate answer from the options
	given below :
	(1) Statement I is correct but Statement II is incorrect
	(2) Statement I is incorrect but Statement II is correct
	(3) Both Statement I and Statement II are correct
	(4) Both Statement I and Statement II are incorrect
[ANS]	3
[Q.90]	The major product of the following reaction is:
	$(i) CH_3MgBr$ $(excess)$ $(ii) H_3O^+$
	(1) $\begin{array}{c} H_{3}C & OH \\ \bigcirc \\ CH_{3} \end{array}$ (2) $\begin{array}{c} OH \\ \bigcirc \\ O \\ O \end{array}$
	(3) $\underset{O}{\overset{CH_3}{\longrightarrow}}_{CN}^{CH_3}$ (4) $\underset{O}{\overset{CH_3}{\longrightarrow}}_{O}^{CH_3}$
[ANS]	4
	Mentors Edusery: Parus Lok Complex, Boring Road Crossing, Patna-1

NEET UG_2	2025_1	EST_04-05-2025	COI	DE-48		[25]				
[Q.94]	Giv	en below are two s	statements : One is lal	belled	d as Assertion (A) ar	nd the other is labelled as				
	Reason (R).									
	Assertion (A): A typical unfertilized, angiosperm embryo sac at maturity is 8 nucleate and 7-									
	cell	ed.								
	Reason (R) : The egg apparatus has 2 polar nuclei.									
	In tl	In the light of the above statements, choose the correct answer from the options given below :								
	(1)	(1) A is true but R is false								
	(2)	A is false but R is	strue							
			e true and R is the corr		-					
	. ,	Both A and R are	e true but R is NOT the	corre	ect explanation of A					
[ANS]	1									
[Q.95]			stics of cells refer to :							
	A.	A mass of prolife	C C							
	B.	Rapid growth of c								
	C.		hage to the surroundin	g tiss	sue					
	D.	Those confined to	•	aivo	n halow i					
			nswer from the options	-	A, B only	(4) A, B, C only				
[ANS]	(1) 4	A, B, D only ((2) B, C, D only	(3)	A, B only	(4) A, B, C Only				
[Q.96]		ich one of the follo	wing is the characteris	stic fe	ature of avmnosperr	ms ?				
[4.00]		Seeds are absen	-		atore of gynnoopon					
	(2)		ave flowers for reprodu	uction	L.					
	()	Seeds are enclos	-							
	. ,	Seeds are naked								
[ANS]	4									
[Q.97]	Mat	tch List-I with List-I	Ι.							
		List-I			List-II					
	A.	Progesterone		I.	Pars intermedia					
	В.	Relaxin		II.	Ovary					
	C.	Melanocyte stimu	lating hormone	III.	Adrenal Medulla					
	D.	Catecholamines		IV.	Corpus Iuteum					
	Cho	pose the correct ar	nswer from the options	give	n below :					
	(1)	A – II, B – IV, C –	- I, D – III	(2)	A - III, B - II, C - IV	V, D – I				
	(3)	A – IV, B – II, C –	- I, D – III	(4)	A - IV, B - II, C - I	II, D – I				
[ANS]	3									

[26]	CODE-48	NEET UG_2025_TEST_04-05-2025									
[Q.98]	Which chromosome in the human genome ha	as the highest number of genes ?									
	(1) Chromosome 1 (2) Chromosome 10	(3) Chromosome X (4) Chromosome Y									
[ANS]	1										
[Q.99]	Which of the following statements about RuBisCO is true ?										
	(1) It is an enzyme involved in the photolysis of water.										
	(2) It catalyzes the carboxylation of RuBP.										
	(3) It is active only in the dark.	(3) It is active only in the dark.									
	(4) It has higher affinity for oxygen than carb	oon dioxide.									
[ANS]	2										
[Q.100]	The first menstruation is called :										
	(1) Diapause (2) Ovulation	(3) Menopause (4) Menarche									
[ANS]	4										
[Q.101]		red organisms was used by Eli Lilly to prepare									
	human insulin ?										
	(1) Virus (2) Phage	(3) Bacterium (4) Yeast									
[ANS]	3										
[Q.102]		elled as Assertion (A) and the other is labelled									
	as Reason (R)										
	Assertion (A) : All vertebrates are chordates										
	period, the notochord is replaced by a cartila	ertebrata possess notochord during the embryonic									
		he correct answer from the options given below:									
	(1) A is true but R is false										
	(2) A is false but R is true										
	(3) Both A and R are true and R is the corre	ct explanation of A									
	(4) Both A and R are true but R is not the co										
[ANS]	3										
[Q.103]	What is the main function of the spindle fibers	s during mitosis ?									
	(1) To repair damaged DNA	(2) To regulate cell growth									
	(3) To separate the chromosomes	(4) To synthesize new DNA									
[ANS]	3										

NEET UG_2	025_1	rest_04-05-2025 CO	DE-48	[27]
[Q.104]	Ma	tch List – I with List – II :		
		List – I		List – II
	Α.	Alfred Hershey and Martha Chase	I.	Streptococcus pneumoniae
	В.	Euchromatin	II.	Densely packed and dark-stained
	C.	Frederick Griffith	III.	Loosely packed and light-stained
	D.	heterochromatin	IV.	DNA as genetic material confirmation
	Ch	pose the correct answer from the option	s give	en below :
	(1)	A-IV, B-III, C-I, D-II	(2)	A-III, B-II, C-IV, D-I
	(3)	A-II, B-IV, C-I, D-III	(4)	A-IV, B-II, C-I, D-III
[ANS]	1			
[Q.105]	Ma	tch List – I with List – II.		
		List – I		List – II
	Α.	Adenosine	I.	Nitrogen base
	В.	Adenylic acid	II.	Nucleotide
	C.	Adenine	III.	Nucleoside
	D.	Alanine	IV.	Amino acid
	Ch	cose the option with all correct matches	•	
	. ,	A-III, B-II, C-I, D-IV	. ,	A-II, B-III, C-I, D-IV
	(3)	A-III, B-IV, C-II, D-I	(4)	A-III, B-II, C-IV, D-I
[ANS]	1			
[Q.106]		rog, the Renal portal system is a special		
	. ,	Kidney and intestine	. ,	Kidney and lower part of body
	(3)	Liver and intestine	(4)	Liver and kidney
[ANS]	2			
[Q.107]	_	ich of the following are the post-transcrip		•
	A.	Transport of pre-mRNA to cytoplasm p		splicing.
	B.	Removal of introns and joining of exons		
	C.	Addition of methyl group at 5' end of hr		
	D.	Addition of adenine residues at 3' end of		NA.
	E.	Base pairing of two complementary RN		an halaw :
		bose the correct answer from the option	•	
LANGI	. ,	B, C, E only (2) C, D, E only	(3)	A, B, C only (4) B, C, D only
[ANS]	4			
L				

[28]	CODE-48 NEET UG_2025_TEST_04-05-2025									
[Q.108]	Polymerase chain reaction (PCR) amplifies DNA following the equation.									
	(1) $2n + 1$ (2) $2N^2$ (3) N^2 (4) 2^n									
[ANS]	4									
[Q.109]	Given below are two statements : One is labelled as Assertion (A) and the other is labelled									
	as Reason (R) .									
	Assertion (A) : Both wind and water pollinated flowers are not very colourful and do not									
	produce nectar.									
	Reason (R) : The flowers produce enormous amount of pollen grains in wind and water									
	pollinated flowers.									
	In the light of the above statements, choose the correct answer from the options given below:									
	(1) A is true but R is false									
	(2) A is false but R is true									
	(3) Both A and R are true and R is the correct explanation of A									
	(4) Both A and R are true but R is NOT the correct explanation of A									
[ANS]	4									
[Q.110]	Epiphytes that are growing on a mango branch is an example of which of the following ?									
	(1) Predation (2) Amensalism (3) Commensalism (4) Mutualism									
[ANS]	3									
[Q.111]	Find the correct statements:									
	A. In human pregnancy, the major organ, systems are formed at the end of 12 weeks.									
	B. In human pregnancy the major organ, systems are formed at the end of 8 weeks.									
	C. In human pregnancy heart is formed after one month of gestation.									
	D. In human pregnancy, limbs and digits develop by the end of second month.									
	E. In human pregnancy the appearance of hair is usually observed in the fifth month.									
	Choose the correct answer from the options given below:									
	(1) B, C, D and E Only (2) A, C, D and E Only									
	(3) A and E Only (4) B and C Only									
[ANS]	2									

(3) C and D Only (4) B, C and D Only 4 Read the following statements on plant growth and development. A. Parthenocarpy can be induced by auxins. C. Dedifferentiation is a pre-requisite for re-differentiation. D. Abscisic acid is a plant growth promoter. E. Apical dominance promotes the growth of lateral-buds. Choose the option with all correct statements. (1) A, D, E only (2) B, D, E only (4) A, C, E only (3) A. B. C only 3 Mentors Eduserv: Parus Lok Complex, Boring Road Crossing, Patna-1 Mentors Eduserv Helpline No.: 9569668800 | 7544015993/4/6/7

'D (1) D (2) C (3)А (4) B [ANS] 2 [Q.113] Frogs respire in water by skin and buccal cavity and on land by skin, buccal cavity and lungs. Choose the correct answer from the following: (1) The statement is false for water but true for land (2) The statement is false for both the environment (3) The statement is true for water but false for land (4) The statement is true for both the environment [ANS] 1 [Q.114] Consider the following statements regarding function of adrenal medullary hormones: A. It causes pupilary constriction B. It is a hyperglycemic hormone C. It causes piloerection D. It increases strength of heart contraction Choose the correct answer from the options given below: (1) A, C and D Only (2) D Only [ANS] [Q.115] B. Plant growth regulators can be involved in promotion as well as inhibition of growth. [ANS]

[Q.112] Identify the part of a bio-reactor which is used as a foam braker from the given figure.

CODE-48

NEET UG_2025_TEST_04-05-2025

[29

hypothala (1) Folici (3) Lutei [ANS] 4 [Q.117] Which of (1) Been [ANS] 1 [Q.118] What is th (1) Auto (3) Mend [ANS] 4 [Q.118] What is th (1) Auto (3) Mend [ANS] 4 [Q.119] Match List List A. A. Head B. Midd C. Acroo D. Tail Choose th (1) (1) A-IUI, (3) A-IV, [ANS] 3 [Q.120] Which of (1) Pea [ANS] 1 [Q.121] Which of A. Azot C. Anak E. Nost				UG_2025_TEST_04-05-2025
(1) Folia (3) Lutei (3) Lutei (3) Lutei (1) Been (1) Been (1) Been (1) Auto (3) Mend (1) Auto (3) Mend (3) Mend (3) Mend (3) Mend (3) Mend (3) Mend (3) Mend (3) Mend (1) Auto (3) Mend (3) Mend (1) Auto (3) Mend (1) Auto (3) Mend (1) Auto (1) Auto	the following hormones release	d from	n the pituitary is ac	tually synthesized in the
(3) Lutei [ANS] 4 [Q.117] Which of (1) Been [ANS] 1 [Q.118] What is th (1) Auto (3) Mend (1) Auto (3) Mend (3) Mend (3) Mend (3) Mend (1) Auto (3) Mend (3) Mend (1) Auto (3) Mend (1) Auto (1) Auto	amus?			
[ANS] 4 [Q.117] Which of (1) Been (1) Been (1) Been (1) Been (1) Auto	cle-stimulating hormone (FSH)	(2)	Adenocorticotrophi	c hormone (ACTH)
[Q.117] Which of (1) Been (1) Been (1) Been (1) Auto (3) Mend (3) Mend (1) Auto (3) Mend (1) Auto (3) Mend (1) Auto (1) Mend (1) Auto (1)	inizing hormone (LH)	(4)	Anti-diuretic hormo	ne (ADH)
(1) Been [ANS] 1 [Q.118] What is the (1) Autor (3) Menor (3) Menor (3) Menor [ANS] 4 [Q.119] Match Liss [A. Head B. Midd [C. Acrossing B. Midd [C. Acrossing Choose the (1) A-III, (3) A-IV, [ANS] 3 [Q.120] Which of (1) Pea [ANS] [ANS] 1 [Q.121] Which of [A. Azoth C. Anak [A. Azoth E. Nost				
[ANS] 1 [Q.118] What is th (1) Autor (3) Menor [ANS] 4 [Q.119] Match Liss [Q.120] D. [Q.120] Choose th (1) A-IH, (3) A-IV, [ANS] 3 [Q.120] Which of (1) Pea [ANS] 1 [Q.121] Which of A. Azoti C. Anak E. Nosti	the following is an example of nor	n-distil	led alcoholic bevera	ge produced by yeast?
[Q.118] What is th (1) Auto (3) Meno (3) Meno (3) Meno (3) Meno (4) [Q.119] Match Lis List A. Head B. Midd C. Acro D. Tail Choose th (1) A-III, (3) A-IV, [ANS] 3 [Q.120] Which of (1) Pea [ANS] 1 [Q.121] Which of A. Azoti C. Anak E. Nost	r (2) Rum	(3)	Whisky	(4) Brandy
(1) Auto (3) Memory (3) Match Liss [Q.119] Match Liss [Q.119] Match Liss A. Head B. Midd C. Acro D. Tail Choose th (1) A-III, (3) A-IV, [ANS] 3 [Q.120] Which of (1) Pea [ANS] 1 [Q.121] Which of A. Azot C. Anak E. Nost				
(3) Meno [ANS] 4 [Q.119] Match Liss List A. Head B. Midd C. Acro D. Tail Choose th (1) A-III, (3) A-IV, [ANS] 3 [Q.120] Which of (1) Pea [ANS] 1 [Q.121] Which of A. Azot C. Anak E. Nost	he pattern of inheritance for polyge	enic tra	ait?	
[ANS] 4 [Q.119] Match List [Q.119] Match List A. Head A. Head B. Midd C. Acro D. Tail Choose th (1) (1) A-IH, (3) A-IV, [ANS] 3 [Q.120] Which of (1) Pea [ANS] 1 [Q.121] Which of A. Azot C. Anak E. Nost	somal dominant pattern	(2)	X-linked recessive	inheritance pattern
[Q.119] Match Liss List A. Head B. Midd C. Acro D. Tail Choose th (1) A-III, (3) A-IV, [ANS] 3 [Q.120] Which of (1) Pea [ANS] 1 [Q.121] Which of A. Azot C. Anak E. Nost	delian inheritance pattern	(4)	Non-mendelian inh	eritance pattern
List A. Head B. Midd C. Acro D. Tail Choose th (1) (1) A-IN, (3) A-IV, [ANS] 3 [Q.120] Which of (1) Pea [ANS] 1 [Q.121] Which of A. Azot C. Anak E.				
A. Head B. Midd C. Acro D. Tail Ch→se th (1) (1) A-IH, (3) A-IV, [ANS] 3 [Q.120] Whi-ch of (1) Pea [ANS] 1 [Q.121] Whi-ch of (1) Azoth [ANS] 1 [Q.121] Whi-ch of (1) Azoth [A. Azoth [A. Azoth [A. Azoth [A. Nosth	st 1 with List - II.			
B. Midd C. Acro D. Tail Choose th (1) (1) A-IV, (3) A-IV, [ANS] 3 [Q.120] Which of (1) Pea [ANS] 1 [Q.121] Which of A. Azot C. Anak E. Nost		_	List - II -	
C. Acro D. Tail Choose th (1) (1) A-IU, (3) A-IV, [ANS] 3 [Q.120] Which of (1) Pea [ANS] 1 [Q.121] Which of A. Azot C. Anak E. Nost		l. 	Enzymes	
D. Tail Choose th (1) A-III, (3) A-IV, [ANS] 3 [Q.120] Which of (1) Pea [ANS] 1 [Q.121] Which of A. Azot C. Anal E. Nost	lle piece	II. 	Sperm motility	
Choose th (1) A-III, (3) A-IV, [ANS] 3 [Q.120] Which of (1) Pea [ANS] 1 [Q.121] Which of [A. Azot C. Anak E. Nost	some	III.	Energy	
(1) A-III, (3) A-IV, (3) A-IV, 3 [Q.120] Which of (1) Pea [ANS] 1 [Q.121] Which of A. Azot C. Anak E. Nost	has a sum of a survey frame that and the	IV.	Genetic material	
(3) A-IV, [ANS] 3 [Q.120] Which of (1) Pea [ANS] 1 [Q.121] Which of A. Azot C. Anak E. Nost	he correct answer from the option	•		
[ANS] 3 [Q.120] Which of (1) Pea [ANS] 1 [Q.121] Which of A. Azot C. Anak E. Nost		(2)	A-III, B-II, C-I, D-IV A-IV, B-III, C-II, D-I	
[Q.120] Which of (1) Pea [ANS] 1 [Q.121] Which of A. Azot C. Anak E. Nost	, D-III, C-I, D-II	(4)		
(1) Pea (1) Pea [ANS] 1 [Q.121] Which of A. Azot C. Anak E. Nost	the following is an example of a z	vaomo	probic flower?	
[ANS] 1 [Q.121] Which of A. Azot C. Anak E. Nost	(2) Chilli		Petunia	(4) Datura
[Q.121] Which of A. Azot C. Anak E. Nost		(0)		
A. Azot C. Anak E. Nost	following organisms cannot fix nit	roaen	?	
C. Anak E. Nost	tobacter	B.	Oscillatoria	
	baena	D.	Volvox	
Chasse t	toc			
Choose ti	he correct answer from the option	s givei	n below:	
(1) B on		-	A only	(4) D only
[ANS] 4	· · · · ·	. /	-	· · · ·

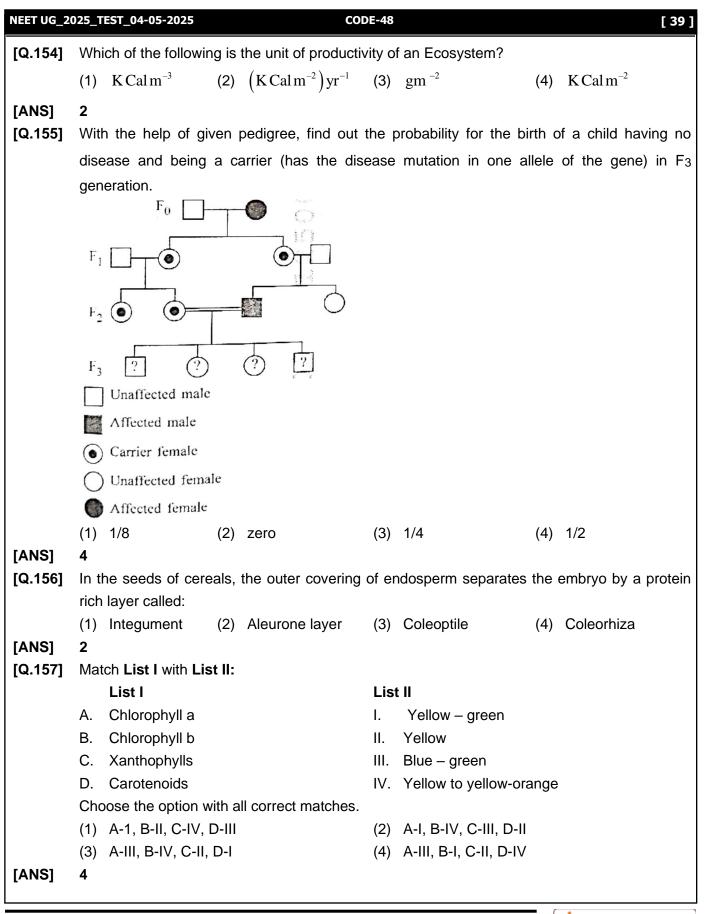
NEET UG_2	025_TEST_04-05-2025 CODE-48 [31]							
[Q.122]	Which one of the following is an example of ex-situ conservation?							
	(1) Zoos and botanical gardens (2) Protected areas							
	(3) National Park (4) Wildlife Sanctuary							
[ANS]	1							
[Q.123]	Who is known as the father of Ecology in India?							
	(1) Ram Udar (2) Birdal Sahni (3) S.R. Kashyap (4) Ramdeo Misra							
[ANS]	4							
[Q.124]	Given below are two statements:							
	Statement I : In the RNA world, RNA is considered the first genetic material evolved to carry							
	out essential life process. RNA acts as a genetic material and also as a catalyst for some							
	important biochemical reactions in living systems. Being reactive, RNA is unstable.							
	Statement II : DNA evolved from RNA and is a more stable genetic material. Its double helical							
	strands being complementary, resist changes by evolving repairing mechanism.							
	In the light of the above statements, choose the most appropriate answer from the options							
	given below:							
	(1) Statement I is correct but statement II is incorrect							
	(2) Statement I is incorrect but statement II is correct							
	(3) Both statement I and statement II are correct							
	(4) Both statement I and Statement II are incorrect							
[ANS]	3							
[Q.125]	Given below are two statements:							
	Statement I: Transfer RNAs and ribosomal RNA do not interact with mRNA.							
	Statement II : RNA interference (RNAi) takes place in all eukaryotic organisms as a method							
	of cellular defence.							
	In the light of the above statements, choose the most appropriate answer from the options							
	given below: (1) Statement I is correct but Statement II is incorrect							
	(2) Statement I is incorrect but Statement II is correct(3) Both Statement I and Statement II are correct							
[ANS]	(4) Both Statement I and Statement II are incorrect2							
	<u>د</u>							

[32]			CODE-48		NEI	ET UG_	2025_TEST_04-05-2025
[Q.126]	Mat	ch List-I with List-II.					
		List-I			List-II		
	Α.	Heart		I.	Erythropoietin		
	В.	Kidney		II.	Aldosterone		
	C.	Gastro-intestinal tra	ct	III.	Atrial natriuretic fa	ctor	
	D.	Adrenal Cortex		IV.	Secretin		
	Cho	oose the correct answ	ver from the options	give	n below:		
	(1)	A-I, B-III, C-IV, D-II		(2)	A-III, B-I, C-IV, D-	II	
	(3)	A-II, B-I, C-III, D-IV		(4)	A-IV, B-III, C-II, D	-1	
[ANS]	2						
[Q.127]	All I	iving members of the	e class Cyclostomat	a are	:		
	(1)	Symbiotic (2)	Ectoparasite	(3)	Free living	(4)	Endoparasite
[ANS]	2						
[Q.128]	Stre	eptokinase produced	by bacterium Strep	tococ	cus is used for		
	(1)	Liver disease treatn	nent	(2)	Removing clots fro	om blo	ood vessels
		Curd production		(4)	Ethanol production	n	
[ANS]	2						
[Q.129]	Rol	e of the water vascul	•				
	Α.	Respiration and Loc		В.	Excretion and Loc		
	C.	Capture and transp		D.	Digestion and Res	spiratio	on
	E.	Digestion and Excre					
		bose the correct answ	ver from the options	-			
	. ,	B and C Only		(2)			
		A and B Only		(4)	A and C Only		
[ANS]	4						
[Q.130]	Ma	ch List-I with List-II.		1 :			
	۸	List-I		Lis			
	А. В.	Pteridophyte		I. II.	Salvia		
	ь. С.	Bryophyte Angiosperm		н. Ш.	Ginkgo Polytrichum		
	D.	Gymnosperm			Salvinia		
		ose the options with	all correct matches		Salvinia		
		A-III, B-IV, C-I, D-II			A-IV, B-III, C-II, D	-1	
	. ,	A-III, B-IV, C-II, D-I		. ,	A-IV, B-III, C-I, D-		
[ANS]	(3) 4	, , ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,		(+)	, , , , , , , , , , , , , , , , , , ,		
	+						

NEET UG_2	025_1	TEST_04-05-2025 CODE-48 [33]							
[Q.131]	Wh	ich are correct:							
	A. Computed tomography and magnetic resonance imaging detect cancers of inter organs.								
	B. Chemotherapeutics drugs are used to kill non-cancerous cells.								
	C.	C. α -interferon activate the cancer patients' immune system and helps in destroying the tumour.							
	D. Chemotherapeutic drugs are biological response modifiers.								
	Ε.	In the case of leukaemia blood cell counts are decreased.							
	Cho	pose the correct answer from the options given below:							
	(1)	C and D only (2) A and C only (3) B and D only (4) D and E only							
[ANS]	2								
[Q.132]	Wh	at are the potential drawbacks in adoption of the IVF method?							
	Α.	High fatality risk to mother							
	В.	Expensive instruments and reagents							
	C.	Husband/wife necessary for being donors							
	D.	Less adoption of orphans							
	Ε.	Not available in India							
	F.	Possibility that the early embryo does not survive							
	Choose the correct answer from the options given below:								
	(1) A, B, C, D, only (2) A, B, C, E F only								
	(3)	B, D, F only (4) A, C, D, F only							
[ANS]	3								
[Q.133]	Cor	nsider the following:							
	A.	The reductive division for the human female gametogenesis starts earlier than that of the male gametogenesis.							
	В.	The gap between the first meiotic division and the second meiotic division is much shorter for males compared to females.							
	C.	The first polar body is associated with the formation of the primary oocyte.							
	D.	Luteinizing Hormone (LH) surge leads to disintegration of the endometrium and onset of menstrual bleeding.							
	Cho	pose the correct answer from the options given below:							
		B and D are true (2) B and C are true							
	(3)								
[ANS]	3								

[34]	CODE-48 NEET UG_2025_TES1_04-05-2025						
[Q.134]	In bryophytes, the gemmae help in which one of the following?						
	(1) Nutrient absorption (2) Gaseous exchange						
	(3) Sexual reproduction (4) Asexual reproduction						
[ANS]	4						
[Q.135]	Given below are two statements : one is labelled as Assertion (A) and the other is labelled as						
	Reason (R).						
	Assertion (A) : The primary function of the Golgi apparatus is to package the materials made						
	by the endoplasmic reticulum and deliver it to intracellular targets and outside the cell.						
	Reason (R) : Vesicles containing materials made by the endoplasmic reticulum fuse with the						
	cis face of the Golgi apparatus, and they are modified and released from the trans face of the						
	Golgi apparatus,						
	In the light of the above statements, choose the correct answer from the options given below:						
	(1) A is true but R is false						
	(2) A is false but R is true						
	(3) Both A and R are true and R is the correct explanation of A						
	(4) Both A and R are true but R is not the correct explanation of A						
[ANS]	3						
[Q.136]	Which one of the following statements refers to Reductionist Biology?						
	(1) Chemical approach to study and understand living organisms.						
	(2) Behavioural approach to study and understand living organisms.						
	(3) Physico-chemical approach to study and understand living organisms.						
	(4) Physiological approach to study and understand living organisms.						
[ANS]	3						
[Q.137]	After maturation, in primary lymphoid organs, the lymphocytes migrate for interaction with						
	antigens to secondary lymphoid organs(s)/ tissue(s) like :						
	A. thymus B. bone marrow C. spleen						
	D. lymph nodes E. Peyer's patches						
	Choose the correct answer from the options given below:						
	(1) E, A, B only (2) C, D, E only (3) B, C, D only (4) A, B, C only						
[ANS]	2						

NEET UG_2	025_1	rest_04-05-2025 C	CODE-48	[35]		
[Q.138]	Ma	tch List – I with List – II				
		List – I		List – II		
	Α.	The Evil Quartet	١.	Cryopreservation		
	В.	Ex situ conservation	II.	Alien species invasion		
	C.	Lantana camara	III.	Causes of biodiversity losses		
	D.	Dodo	IV.	Extinction		
	Cho	pose the option with all correct matches	S.			
	(1)	A-III, B-IV, C-II, D-I	(2)	A-III, B-II, C-IV, D-I		
	(3)	A-III, B-II, C-I, D-IV	(4)	A-III, B-I, C-II, D-IV		
[ANS]	4					
[Q.139]	Hov	w many meiotic and mitotic divisions ne	eed to o	occur for the development of a mature female		
	gar	netophyte from the megaspore mother	cell in a	an angiosperm plant?		
	(1)	1 Meiosis and 3 Mitosis	(2)	No Meiosis and 2 Mitosis		
	(3)	2 Meiosis and 3 Mitosis	(4)	1 Meiosis and 2 Mitosis		
[ANS]	1					
[Q.140]	Wh	ich of the following type of immunity	is pres	ent at the time of birth and is a non-specific		
	typ	e of defence in the human body?				
	(1)	Cell-mediated Immunity	(2)	Humoral Immunity		
	(3)	Acquired Immunity	(4)	Innate Immunity		
[ANS]	4					
[Q.141]		en below are two statements:				
		tement I: Fig fruit is a non-vegetarian				
				ual relationship as fig wasp completes its life		
		le in fig fruit and fig fruit gets pollinated				
	In the light of the above statements, choose the most appropriate answer from the options					
		en below:				
	(1)	Statement I is correct but statement I				
	(2)	Statement I is incorrect but statement				
	(3)	Both statement I and statement II are				
	(4)	Both statement I and statement II are	Incorre	ect		
[ANS]	3					



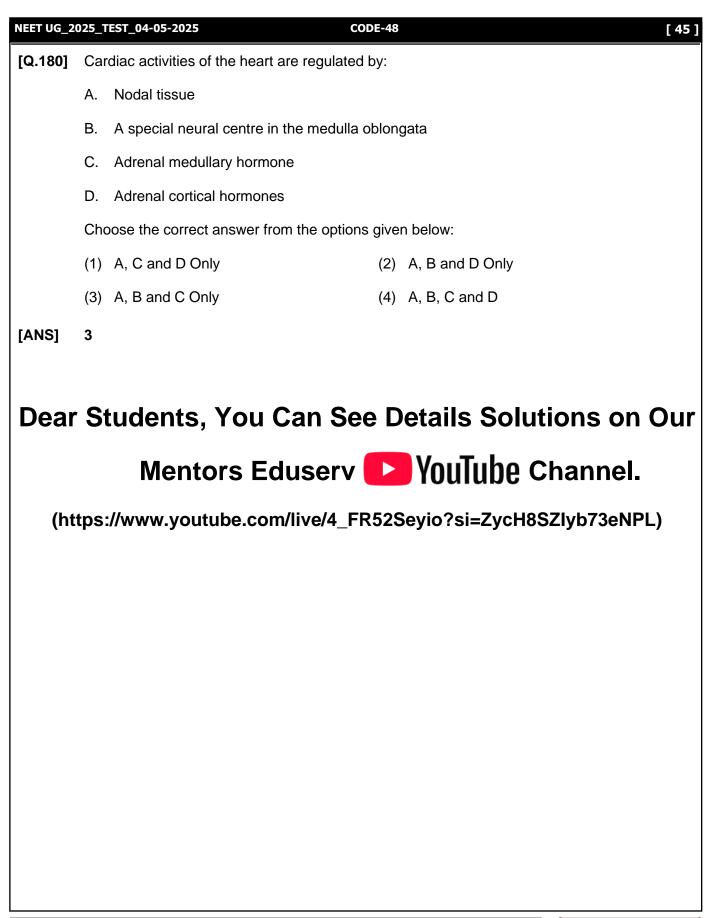
[36]		CODE-48	NEET UG_2025_TEST_04-05-2025						
[Q.142]	Given below are two statements: One is labelled as Assertion (A) and the other is labelled as								
	Reason (R).								
	Assertion (A): Cells of the tapetum possess dense cytoplasm and generally have more than								
	one nucleus.								
	Rea	ason (R): Presence of more than one nucle	eus in the tapetum increases the efficiency of						
	nou	urishing the developing microspore mother cel	ls.						
	In li	light of the above statements, choose the mo	st appropriate answer from the options given						
	bel	low:							
	(1)	A is true but R is false							
	(2)	A is false but R is true							
	(3)	Both A and R are true and R is the correct e	xplanation of A						
	(4)	Both A and R are true but R is NOT the corr	ect explanation of A						
[ANS]	3								
[Q.143]	Fro	om the statements given below choose the cor	rect option:						
	Α.	The eukaryotic ribosomes are 80S and proke	aryotic ribosomes are 70S.						
	В.	B. Each ribosome has two sub-units.							
	C.	C. The two sub-units of 80S ribosome are 60S and 40S while that of 70S are 50S and 30S.							
	D.	D. The two sub-units of 80S ribosome are 60S and 20S and that of 70S are 50S and 20S.							
	E.	The two sub-units of 80S are 60S and 30S a							
	(1)	A, B, E are true (2) B, D, E are true (3)	A, B, C are true (4) A, B, D are true						
[ANS]	3								
[Q.144]		nich one of the following enzymes contains 'Ha	· · · ·						
	(1)	, G	Catalase						
	(3)	RuBisCo (4)	Carbonic anhydrase						
[ANS]	2								
[Q.145]									
		art in a frog?							
		· · · · · · · · · · · · · · · · · · ·	Vena cava						
[ANG]	(3) 2	Aorta (4)	Pulmonary artery						
[ANS]	2								

NEET UG_20	025_TEST_04-05-2025 CODE-48 [37]								
[Q.146]	Given below are the stages in the life cycle of pteridophytes. Arrange the following stages in								
	the correct sequence.								
	A. Prothallus stage								
	B. Meiosis in spore mother cells								
	C. Fertilisation								
	D. Formation of archegonia and antheridia in gametophyte.								
	E. Transfer of antherozoids to the archegonia in presence of water.								
	Choose the correct answer from the options given below:								
	(1) D, E, C, A, B (2) E, D, C, B, A (3) B, A, D, E, C (4) B, A, E, C, D								
[ANS]	3								
[Q.147]	The blue and white selectable markers have been developed which differentiate recombinant								
	colonies from no-recombinant colonies on the basis of their ability to produce colour in the								
	presence of a chromogenic substrate.								
	Given below are two statements about this method:								
	Statement I: The blue coloured colonies have DNA insert in the plasmid and they are								
	identified as recombinant colonies.								
	Statement II: The colonies without blue colour have DNA insert in the plasmid and are								
	identified as recombinant colonies.								
	In the light of the above statements, choose the most appropriate answer from the options								
	given below:								
	(1) Statement I is correct but Statement II is incorrect								
	(2) Statement I is incorrect but Statement II is correct								
	 (3) Both Statement I and Statement II are correct (4) Both Statement I and Statement II are correct 								
[ANC]	(4) Both Statement I and Statement II are incorrect								
[ANS]	2 Which of the following mission has is NOT involved in the manageration of household and ducto?								
[Q.148]	Which of the following microbes is NOT involved in the preparation of household products?								
	A. Aspergillus niger B. Lactobacillus								
	C. Trichoderma polysporum D. Saccharomyces cerevisiae								
	E. Propionibacterium sharmanii								
	Choose the correct answer from the options given below: (1) C and D only (2) C and E only (3) A and B only (4) A and C only								
[VNG]	(1) C and D only (2) C and E only (3) A and B only (4) A and C only 4								
[ANS]	-								

[38]	COD	E-48	NEET UG_2025_TEST_04-05-2025				
[Q.149]	Silencing of specific mRNA is possible via RNAi because of -						
	(1) Complementary tRNA	(2)					
	(3) Complementary dsRNA	(4)	Inhibitory ssRNA				
[ANS]	3						
[Q.150]	The complex II of mitochondrial electror	•					
	(1) Cytochrome c oxidase	(2)	NADH dehydrogenase				
	(3) Cytochrome bc ₁	(4)	Succinate dehydrogenase				
[ANS]	4						
[Q.151]			a newly found animal, a researcher did the				
		•	with presence of mesodermal tissue towards				
	-		bserved towards the alimentary canal. What				
	could be the possible coelome of that a(1) Schizocoelomate	(2)	Spongocoelomate				
	(3) Acoelomate	(2) (4)					
[ANS]	4	(')					
[Q.152]	Given blow are two statements:						
	Statements I: In a floral formula \oplus s	stands fo	or zygomorphic nature of the flower, and G				
	stands for inferior ovary.		, , , , , , , , , , , , , , , , , , ,				
	•	stands fo	or actinomorphic nature of the flower and G				
	Statements II: In a floral formula \oplus stands for actinomorphic nature of the flower and <u>G</u> stands for superior overv						
	stands for superior ovary. In the light of the above statements, choose the Correct answer from the option given below:						
	 (1) Statement I is correct but Statement II is incorrect 						
	(2) Statement I is incorrect but Stateme						
	(3) Both Statement I and Statement II are correct						
	(4) Both Statement I and Statement II	are incor	rect				
[ANS]	2						
[Q.153]	Given below are two statements:						
	Statement I: In ecosystem, there is u	nidirectio	onal flow of energy of sun from producers to				
	consumers.						
	Statement II: Ecosystems are exempte		•				
	-	noose the	e most appropriate answer from the options				
	given below: (1) Statement I is correct but Statemer	nt II is inc	orrect				
	(2) Statement I is incorrect but Statement						
	(3) Both Statement I and Statement II						
	(4) Both Statement I and Statement II						
	1						

[40]	CODE-48	NEET UG_2025_TEST_04-05-2025
[Q.158]	Who proposed that the genetic code for am	ino acids should be made up of three nucleotides?
	(1) Jacque Monod (2) Franklin Stahl	(3) George Gamow (4) Francis Crick
[ANS]	3	
[Q.159]	Histones are enriched with –	
	(1) Phenylalanine & Leucine	(2) Phenylalanine & Arginine
	(3) Lysine & Arginine	(4) Leucine & Lysine
[ANS]	3	
[Q.160]	Which of the following enzyme(s) are NO T	
	A. Restriction enzymes	B. DNA ligase
	C. DNA mutase	D. DNA recombinase
	E. DNA polymerase	- Alexandra - Alexandra
	Choose the correct answer from the option	•
LANCI	(1) D and E only (2) B and C only	(3) C and D only (4) A and B only
[ANS]	3	prokanyatia apli which halps in call wall formation
[Q.161]	DNA replication and respiration is	prokaryotic cell which helps in cell wall formation,
	(1) Cristae	(2) Endoplasmic Reticulum
	(3) Mesosome	(4) Chromatophores
[ANS]	3	
[Q.162]	Which factor is important for termination of	transcription?
[]	(1) ρ (rho) (2) γ (gamma)	(3) α (alpha) (4) σ (sigma)
[ANS]	1	
[Q.163]	Which of the following statement is correct	about location of the male frog copulatory pad?
[41100]	(1) Second digit of fore limb	(2) Frist digit of the fore limb
	(3) First and Second digit of fore limb	(4) First digit of hind limb
[ANS]	2	
[Q.164]	Which of the following diagrams is correct w	vith regard to the proximal (P) and distal (D) tubule
	of the Nephron.	
	P	
	P D HCO	P D NaCl HCOT NaCl NH ₃
	HCO A ³ NaCl HO HCO A ³ NaCl HO HCO A A A A A A A A A A A A A	NaCI HCO- NaCI NHI3
	(1) TAT	
	H ⁺ NH ₃ NaCl H ⁺	H^+ H_2O K^+ H_2O
	HCO, NaCI H2O HCO	P D HCOHO NaCI HO HCO_
	and and a	HCO- ³ NaCI HO NaCI HO HCO ³ O
	(3) 2 1 1 1 1 1 1	(4)
	H ⁺ H ₂ O K ⁺ H ⁺	$H^+ NH_3$
[ANS]	4	
	-	
	Mentore Educary Dar	us Lok Complex, Boring Road Crossing, Patna-1
Pentor		: 9569668800 7544015993/4/6/7

NEET UG_2	025_1	rest_04-05-2025		CODE-48 [41]			
[Q.165]	lde	Identify the statement that is NOT correct.					
	(1)	Antigen binding site is lo	ding site is located at C-terminal region of antibody molecules.				
	(2)	Constant region of he	avy	and light chains are located at C terminus of antibody			
		molecules.					
	(3)	Each antibody has two	light	and two heavy chains.			
	(4)	The heavy and light cha	ains a	are held together by disulfide bonds.			
[ANS]	1						
[Q.166]	Ma	tch List I with List II					
		List-I	Lis	t-ll			
	Α.	Scutellum	I.	Persistent nucellus			
	В.	Non-albuminous seed	١١.	Cotyledon of Monocot seed			
	C.	Epiblast	III.	Groundnut			
	D.	Perisperm	IV.	Rudimentary cotyledon			
	Ch	pose the option with all co	ose the option with all correct matches.				
	(1)	A-IV, B-III, C-I, D-II		(2) A-II, B-IV, C-III, D-I			
	(3)	A-II, B-III, C-IV, D-I		(4) A-IV, B-III, C-II, D-I			
[ANS]	3						
[Q.167]	Fin	Find the statement that is NOT correct with regard to the structure of monocot stem.					
	(1)	1) Vascular bundles are conjoint and closed.					
	(2)	?) Phloem parenchyma is absent.					
	(3)	Hypodermis is parenchy	/mate	ous.			
	(4)	Vascular bundles are so	catter	red.			
[ANS]	3						


[42]	CODE-48 NEET UG_2025_TEST_04-05-2025							
[Q.168]	Twins are born to a family that lives next door to you. The twins are a boy and a girl. Which of							
	the following must be true?							
	(1) They were conceived through in vitro fertilization.							
	(2) They have 75% identical genetic content.							
	(3) They are monozygotic twins.							
	(4) They are fraternal twins.							
[ANS]	4							
[Q.169]	Sweet potato and potato represent a certain type of evolution. Select the correct combination of terms to explain the evolution.							
	(1) Homology, convergent (2) Analogy, divergent							
	(3) Analogy, convergent (4) Homology, divergent							
[ANS]	3							
[Q.170]	Which one of the following phytohormones promotes nutrient mobilization which helps in the delay of leaf senescence in plants ?							
	(1) Gibberellin (2) Cytokinin (3) Ethylene (4) Abscisic acid							
[ANS]	2							
[Q.171]	Why can't insulin be given orally to diabetic patients?							
	(1) Because of structural variation							
	(2) Its bioavailability will be increased							
	 (3) Human body will elicit strong immune response (4) It will be directed in Castro Intertingly (CI) tract 							
[ANS]	(4) It will be digested in Gastro-Intestinal (GI) tract4							
[Q.172]	4 Name the class of enzyme that usually catalyze the following reaction							
	$S-G+S^{\#} \rightarrow S+S^{\#}-G$							
	Where, $G \rightarrow a$ group other than hydrogen							
	$S \rightarrow a substrate$							
	$S^{\#} \rightarrow$ another substrate							
	(1) Transferse (2) Ligase (3) Hydrolase (4) Lyase							
[ANS]	1							

NEET UG_2	025_TEST_04-05-2025 CODE-48 [43]								
[Q.173]	Given below are two statements :								
	Statement I: The DNA fragments extracted from gel electrophoresis can be used in								
	construction of recombinant DNA.								
	Statement II : Smaller size DNA fragments are observed near anode while larger fragments								
	are found near the wells in an agarose gel.								
	In the light of the above statements, choose the most below: appropriate answer from the								
	options given								
	(1) Statement I is correct but statement II is incorrect								
	(2) Statement is incorrect but statement II is correct								
	(3) Both statement I and statement II are correct								
	(4) Both statement I and statement II are incorrect								
[ANS]	3								
[Q.174]	The correct sequence of events in the life cycle of bryophytes is								
	A. Fusion of antherozoid with egg.								
	B. Attachment of gametophyte to substratum.								
	C. Reduction division to produce haploid spores.								
	D. Formation of sporophyte.								
	E. Release of antherozoids into water.								
	Choose the correct answer from the options given below :								
	(1) B, E, A, D, C (2) D, E, A, B, C (3) D, E, A, C, B (4) B, E, A, C, D								
[ANS]	1								
[Q.175]	Genes R and Y follow independent assortment. If RRYY produce round yellow seeds and rryy								
	produce wrinkled green seeds, what will be the phenotypic ratio of the F2 generation?								
	 (1) Phenotypic ratio - 9:3:3:1 (2) Phenotypic ratio-9:7 (3) Phenotypic ratio - 9:4 								
	(3) Phenotypic ratio-1:2:1 (4) Phenotypic ratio-3:1								
[ANS]	1								
[Q.176]	Each of the following characteristics represent a Kingdom proposed by Whittaker. Arrange the								
	following in increasing order of complexity of body organization. A. Multicellular heterotrophs with cell wall made of chitin.								
	B. Heterotrophs with tissue/organ/organ system level of body organization.								
	C. Prokaryotes with cell wall made of polysaccharides and amino acids.								
	 D. Eukaryotic autotrophs with tissue/organ level of body organization. E. Eukaryotes with cellular body organization. 								
	Choose the correct answer from the options given below:								
	(1) A, C, E, D, B (2) C, E, A, B, D (3) A, C, E, B, D (4) C, E, A, D, B								
[ANS]	4								
	т Т								

[44]			CODE-48		NEET UG_2025_TEST_04-05-2025
[Q.177]	Mat	tch List- I with List -II.			
	Lis	t — I	List-II		
	Α.	Centromere	I. Mitochondrion		
	В.	Cilium	II. Cell division		
	C.	Cristae	III. Cell movemen	t	
	D.	Cell membrane	IV. Phospholipid E	Bilaye	r
	Cho	oose the correct answ	er from the options	give	n below :
	(1)	A-IV, B-II, C-III, D-I		(2)	A-II, B-III, C-I, D-IV
	(3)	A-I, B-II, C-III, D-IV		(4)	A-II, B-I, C-IV, D-III
[ANS]	2				
[Q.178]	Wh	ich one of the follo	wing equations re	epres	ents the Verhulst-Pearl Logistic Growth of
	рор	oulation?			
	(1)	$\frac{dN}{dt} = rN\left(\frac{N-K}{N}\right)$		(2)	$\frac{dN}{dt} = N\left(\frac{r-K}{K}\right)$
	(3)	$\frac{dN}{dt} = r\left(\frac{K-N}{K}\right)$		(4)	$\frac{dN}{dt} = rN\left(\frac{K-N}{K}\right)$
[ANS]	4				
[Q.179]	Mat	tch List - I with List - I			
		List – I		Lis	t – II
	A.	Emphysema		I.	Rapid spasms in muscle due to low Ca ⁺⁺ in body fluid
	B.	Angina Pectoris		II.	Damaged alveolar walls and decreased respiratory surface
	C.	Glomerulo-nephritis		III.	Acute chest pain when not enough oxygen is reaching to heart muscle
	D.	Tetany		IV.	
		bose the Correct answ	ver from the options		-
		A-II, B-IV, C-III, D-I	·	(2)	A-II, B-III, C-IV, D-I
		A-III, B-I, C-IV, D-II		(4)	A-III, B-I, C-II, D-IV
[ANS]	2	· · · ·			

