

JEE (ADVANCED) 2025 PAPER-1

[PAPER ANSWER KEY WITH SOLUTION]

HELD ON SUNDAY 18THMAY 2025

MATHEMATICS

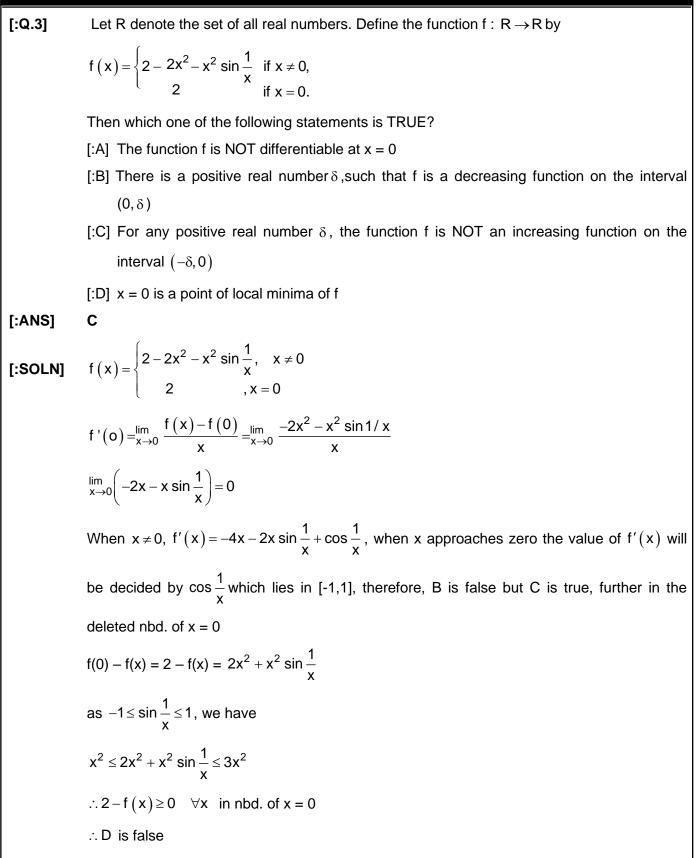
SECTION 1 (Maximum Marks : 12)

- This section contains **FOUR (04)** questions.
- Each question has **FOUR** options (A), (B), (C) and (D). **ONLY ONE** of these four options is the correct answer.
- For each question, choose the option corresponding to the correct answer.

Answer to each question will be evaluated according to the following marking scheme:

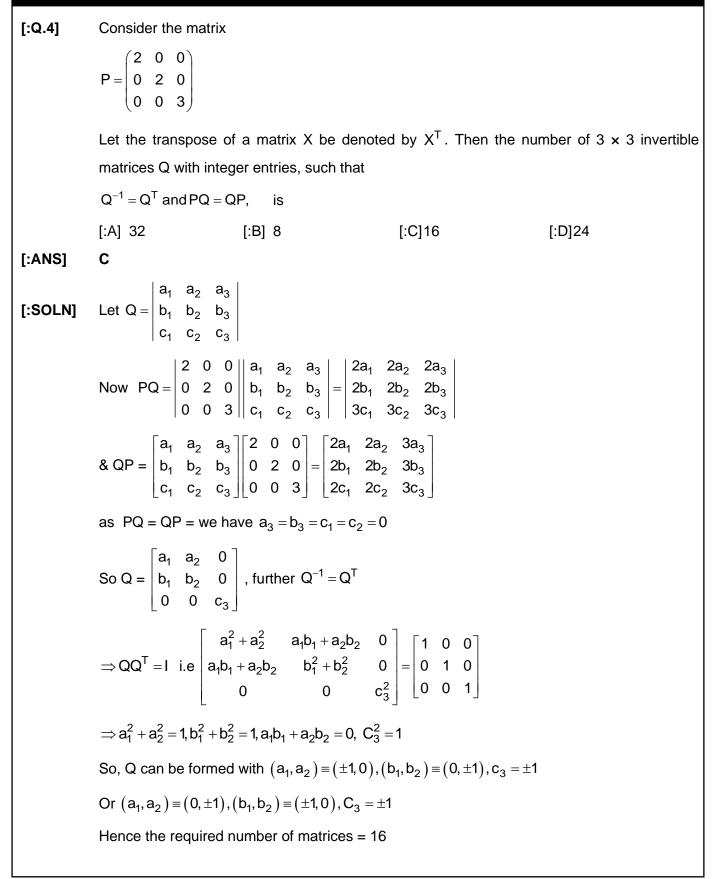
Full Marks : +3 If ONLY the correct option is chosen;

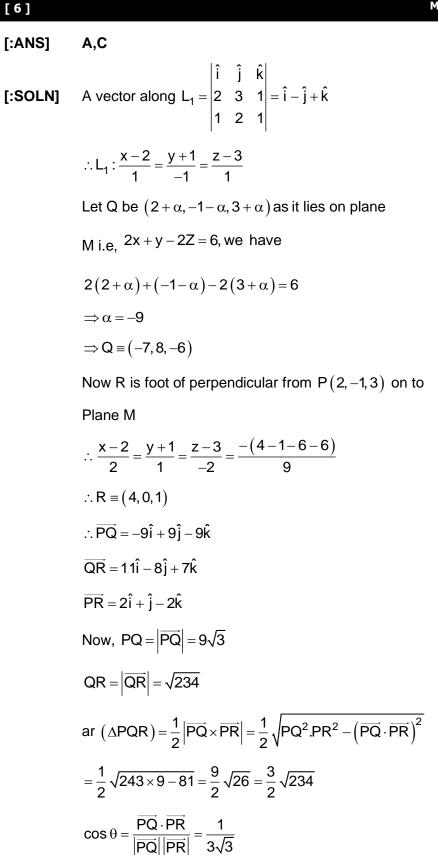
Zero Marks: 0 If none of the options is chosen (i.e. the question is unanswered);

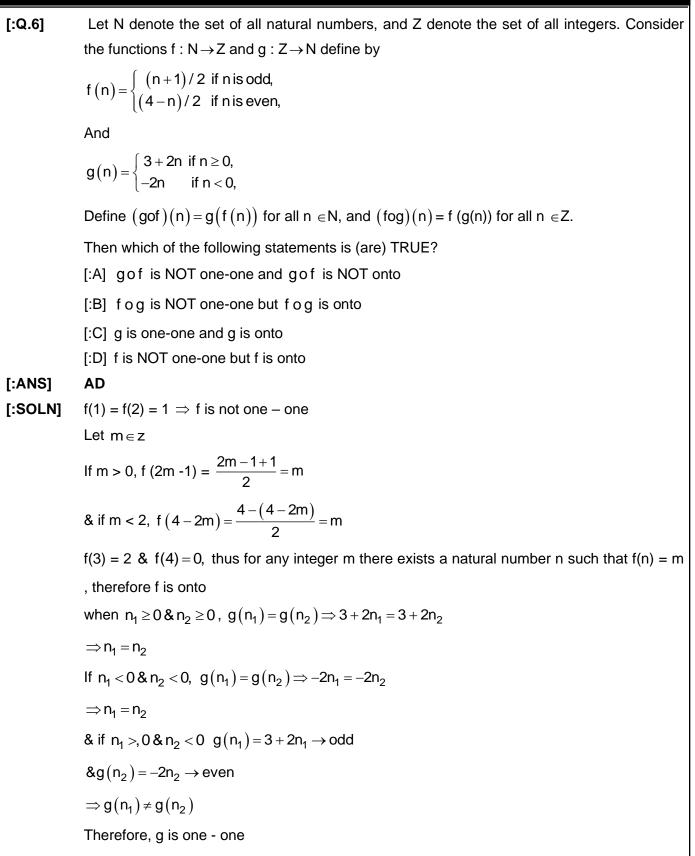

Negative Marks : -1 In all other cases.

[:Q.1] Let R denote the set of all real numbers. Let $a_i, b_i \in R$ for $i \in \{1, 2, 3\}$. Define the functions f : $R \rightarrow R$, g: $R \rightarrow R$, and h: $R \rightarrow R$ by $f(x) = a_1 + 10x + a_2x^2 + a_3x^3 + x^4,$ $q(x) = b_1 + 3x + b_2x^2 + b_3x^3 + x^4$, h(x) = f(x+1) - g(x+2).If $f(x) \neq g(x)$ for every $x \in \mathbb{R}$, then the coefficient of x^3 in h (x) is [:A] 8 [:B] 2 [:C]-4 [:D]-6 [:ANS] С h(x) = f(x+1) - g(x+2)[:SOLN] Coeff. Of x^3 in $h(x) = \frac{h'''(0)}{3!} = \frac{f'''(1)}{3!} - \frac{g'''(2)}{3!}$ $=(a_3+4)-(b_3+8)$

> Mentors Eduserv: Parus Lok Complex, Boring Road Crossing, Patna-1 Helpline No.: 9569668800 | 7544015993/4/6/7




[4]



	SECTION 2 (Maximum Marks: 12)
•	This section contains THREE (03) questions.
•	Each question has FOUR options (A), (B), (C) and (D). ONE OR MORE THAN ONE of
	these four option(s) is(are) correct answer(s).
•	For each question, choose the option(s) corresponding to (all) the correct answer(s).
•	Answer to each question will be evaluated according to the following marking scheme:
	Full Marks : +4 ONLY if (all) the correct option(s) is(are) chosen;
	Partial Marks : +3 If all the four options are correct but ONLY three options are chosen; Partial Marks : +2 If three or more options are correct but ONLY two options are chosen,
	both of which are correct;
	Partial Marks : +1 If two or more options are correct but ONLY one option is chosen and it
	is a correct option;
	Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered);
	Negative Marks : -2 In all other cases.
•	For example, in a question, if (A), (B) and (D) are the ONLY three options corresponding to
	correct answers, then
	choosing ONLY (A), (B) and (D) will get +4 marks;
	choosing ONLY (A) and (B) will get +2 marks;
	choosing ONLY (A) and (D) will get +2 marks;
	choosing ONLY (B) and (D) will get +2 marks;
	choosing ONLY (A) will get +1 mark;
	choosing ONLY (B) will get +1 mark;
	choosing ONLY (D) will get +1 mark;
	choosing no option (i.e. the question is unanswered) will get 0 marks; and
	choosing any other combination of options will get -2 marks.
[:Q.5]	Let L_1 be the line of intersection of the planes given by the equations
	2x + 3y + z = 4 and $x + 2y + z = 5$
	Let L_2 be the line passing through the point $P(2, -1, 3)$ and parallel to L_1 . Let M denote the
	plane given by the equation
	2x + y - 2z = 6.
	Suppose that the line L_2 meets the plane M at the point Q . Let R be the foot of the
	perpendicular drawn from P to the plane M .
	Then which of the following statements is (are) TRUE?
	[:A] The length of the line segment PQ is $9\sqrt{3}$
	[:B] The length of the line segment QR is 15
	[:C] The area of $\triangle PQR$ is $\frac{3}{2}\sqrt{234}$
	[:D] The acute angle between the line segments PQ and PR is $\cos^{-1}\left(\frac{1}{2\sqrt{3}}\right)$

Mentors Eduserv: Parus Lok Complex, Boring Road Crossing, Patna-1 Helpline No. : 9569668800 | 7544015993/4/6/7

 $g \circ f(2) = g(f(2)) = g(1) = 5$

g o f (n) is not one - one

if n is odd natural number $f(n) = \frac{n+1}{2} > 0$

$$\Rightarrow g \circ f(n) = 3 + 2\left(\frac{n+1}{2}\right) = n+4 \ge 5$$

& if n is even
$$f(n) = \frac{4-n}{2}$$

If
$$\frac{4-n}{2} \ge 0$$
, g o f (n) = 3 + 2 $\left(\frac{4-n}{2}\right) = 7-r$

& if
$$\frac{4-n}{2} < 0$$
, g o f(n) = n - 4 \ge 0

: g o f is not onto

If
$$n \ge 0$$
, $f(g(n)) = f(3+2n) = \frac{3+2n+1}{2} = 2+n$
If $n < 0$ $f(g(n)) = f(-2n) = \frac{4-(-2n)}{2} = 2+n$

If
$$n < 0$$
 f $(g(n)) = f(-2n) = \frac{4}{2} = 2 + \frac{4}{2}$

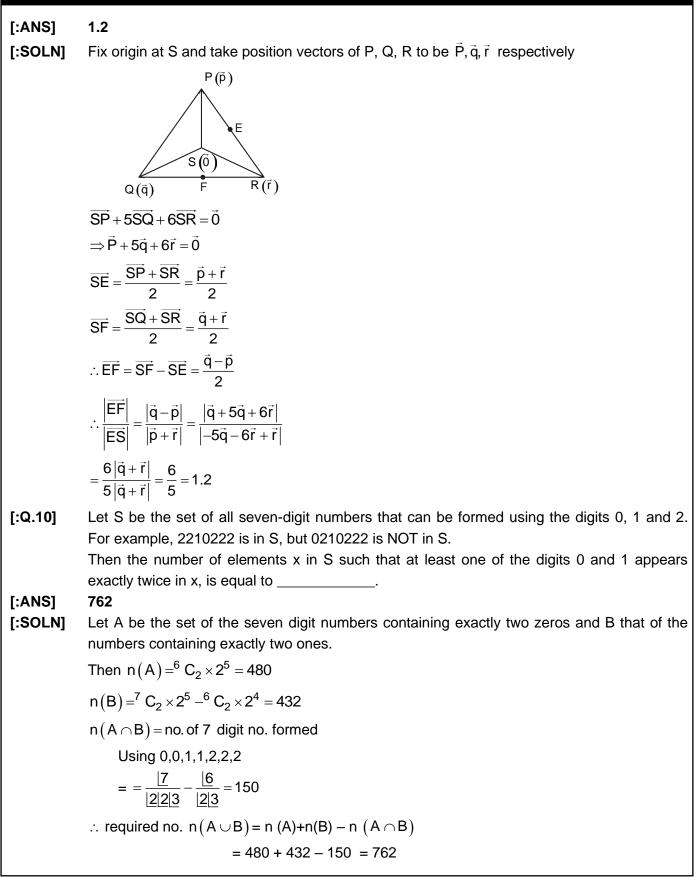
f(g(n)) = n + 2 for all $n \in Z$ f o g (n) is one-one & onto

[:Q.7] Let R denote the set of all real numbers. Let $z_1 = 1 + 2i$ and $z_2 = 3i$ be two complex numbers, where $i = \sqrt{-1}$. Let

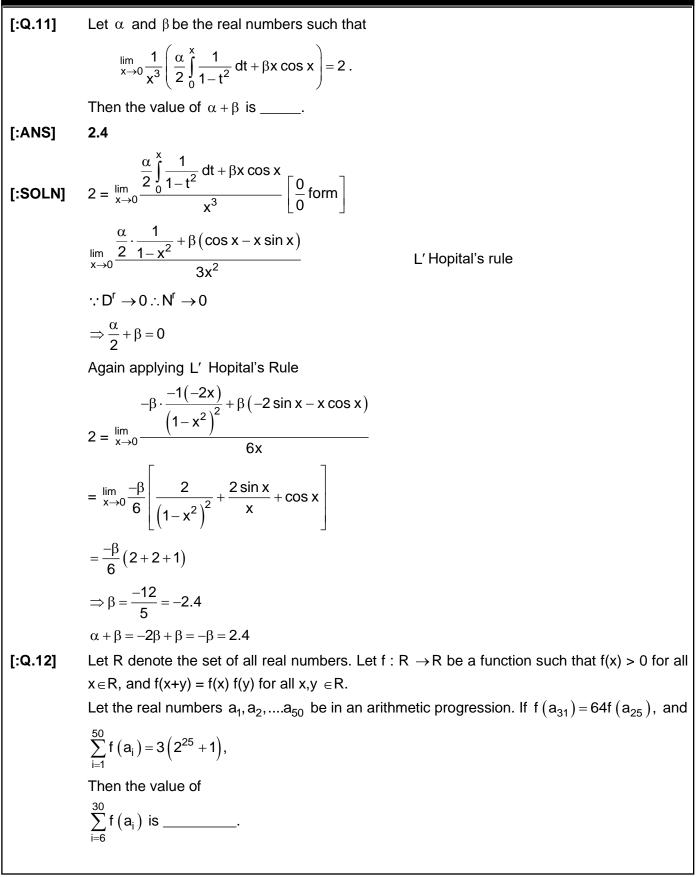
$$S = \{(x, y) \in R \times R : |x + iy - z_1| = 2|x + iy - z_2|\}.$$

Then which of the following statements is (are) TRUE?

[:A] S is a circle with centre
$$\left(-\frac{1}{3}, \frac{10}{3}\right)$$
 [:B]S is a circle with centre $\left(\frac{1}{3}, \frac{8}{3}\right)$
[:C] S is a circle with radius $\frac{\sqrt{2}}{3}$ [:D]S is a circle with radius $\frac{2\sqrt{2}}{3}$
A,D

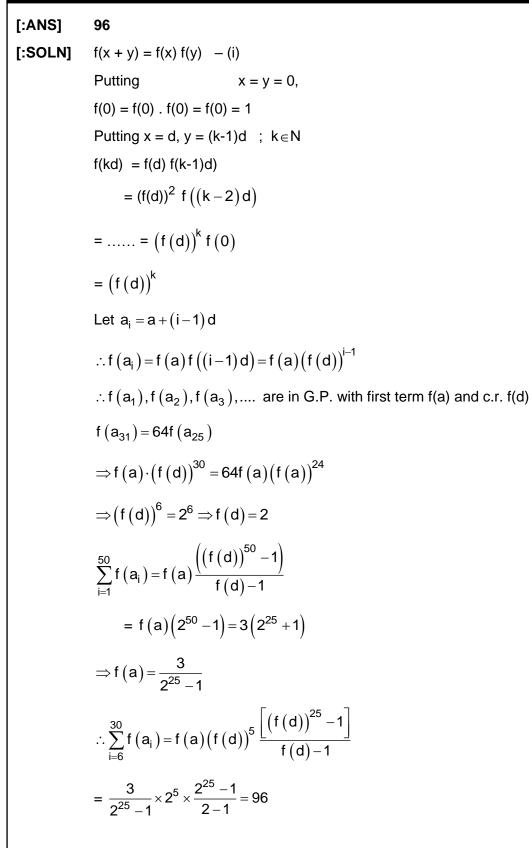

[:ANS]

[:SOLN]	x + iy - (1 + 2i) = 2 x + iy - 3i
	$\sqrt{(x-1)^{2}+(y-2)^{2}}=2\sqrt{x^{2}+(y-3)^{2}}$
	$\Rightarrow 3x^2 + 3y^2 + 2x - 20y + 31 = 0$
	$\Rightarrow x^{2} + y^{2} + \frac{2}{3}x - \frac{20}{3}y + \frac{31}{3} = 0$
	Which is a circle with centre $\left(-\frac{1}{3}, \frac{10}{3}\right)$ and radius $\frac{2\sqrt{2}}{3}$
	SECTION-3 (Maximum Marks : 24)
•	This section contains SIX (06) questions.
•	The answer to each question is a NUMERICAL VALUE.
•	For each question, enter the correct numerical value of the answer using the mouse and the
	on-screen virtual numeric keypad in the place designated to enter the answer.
•	If the numerical value has more than two decimal places, truncate/round-off the value to
	TWO decimal places.
•	Answer to each question will be evaluated according to the following marking scheme:
	Full Marks : +4 If ONLY the correct numerical value is entered in the designated place;
	Zero Marks : 0 In all other cases.
[:Q.8]	Let the set of all relations R on the set {a, b, c, d, e, f }, such that R is reflexive and
	symmetric, and R contains exactly 10 elements, be denoted by S.
	Then the number of elements in S is
[:ANS]	
[:SOLN]	Since R has 10 elements & it has to be reflexive six elements will be (a,a), (b,b), (c,c) (d,d),
	(e,e), (f,f) and since B is summatric remaining 4 elements must some in pairs of the form (v,v) and (v, v)
	R is symmetric remaining 4 elements must come in pairs of the form (x,y) and (y, x)
	therefore, there must be two such pairs, there are ${}^{6}C_{2} = 15$ such possible pairs, therefore,
	required number of ways = ${}^{15}C_2 = 105$.
[:Q.9]	For any two points M and N in the XY -plane, let $\overrightarrow{\text{MN}}$ denote the vector from M to N, and $\overrightarrow{0}$ denote the zero vector. Let P, Q and R be three distinct points in the XY -plane. Let S be a point inside the triangle Δ PQR such that
	$\overrightarrow{SP} + 5\overrightarrow{SQ} + 6\overrightarrow{SR} = \overrightarrow{0}$.
	Let E and F be the mid-points of the sides PR and QR, respectively. Then the value of length of the line segment EF length of the line segment ES is


[9]

entors Eduserv[®]

[10]



Mentors Eduserv: Parus Lok Complex, Boring Road Crossing, Patna-1 Helpline No.: 9569668800 | 7544015993/4/6/7 Mentors Eduserv[®]

[11]

[12]

[:Q.13]	For all x > 0, let $y_1(x), y_2(x)$ and $y_3(x)$ be the	ne functions satisfying				
	$\frac{dy_1}{dx} - (\sin x)^2 y_1 = 0, y_1(1) = 5,$					
	$\frac{dy_2}{dx} - (\cos x)^2 y_2 = 0, y_2(1) = \frac{1}{3},$					
	ux S					
	$\frac{dy_3}{dx} - \left(\frac{2 - x^3}{x^3}\right) y_3 = 0, \ y_3(1) = \frac{3}{5e},$					
	respectively. Then					
	$\lim_{x \to 0^{+}} \frac{y_{1}(x) y_{2}(x) y_{3}(x) + 2x}{e^{3x} \sin x}$					
	Is equal to					
[:ANS]	2 dv					
[:SOLN]	$\frac{\mathrm{d}y_1}{\mathrm{d}x} = \left(\sin^2 x\right) y_1$					
	$\int \frac{\mathrm{d}y_1}{y_1} = \int \sin^2 x \mathrm{d}x = \int \frac{1 - \cos 2x}{2} \mathrm{d}x$					
	$\Rightarrow \ln y_1 = \frac{x}{2} - \frac{\sin 2x}{4} + c_1$					
	Similarly , $\ln y_2 = \frac{x}{2} + \frac{\sin 2x}{4} + c_2$					
	and , $\ln y_3 = -x^{-2} - x + c_3$					
	Adding, $\ln(y_1y_2y_3) = \frac{-1}{x^2} + c$	$(c = c_1 + c_2 + c_3)$				
	Putting $x = 1$, $\ln\left(5 \times \frac{1}{3} \times \frac{3}{5e}\right) = -1 + c$					
	\Rightarrow c = 0					
	$\therefore y_1 y_2 y_3 = e^{-1/x^2}$					
	$\frac{\lim_{x \to 0^{+}} \frac{y_{1}(x)y_{2}(x)y_{3}(x) + 2x}{e^{3x} \sin x}$					
	$=_{x\to 0^{+}}^{\lim} \frac{e^{-1/x^{2}} + 2x}{e^{3x} \sin x}$					
	$=\lim_{x\to 0^+}\frac{\frac{1}{xe^{1/x^2}}+2}{e^{3x}\cdot\frac{\sin x}{x}}$					
	$x = \frac{0+2}{1\times 1} = 2$					
	1 × 1					

	MATHEMATICS_JEE ADVANCED 2025_PAPER-1
SECTION-4 (Maximum Marks : 12)

- This section contains **THREE (03)** Matching List Sets.
- Each set has **ONE** Multiple Choice Question.
- Each set has **TWO** lists: List-I and List-II.

[14]

- List-I has Four entries (P), (Q), (R) and (S) and List-II has Five entries (1), (2), (3), (4) and (5).
- FOUR options are given in each Multiple Choice Question based on List-I and List-II and ONLY ONE of these four options satisfies the condition asked in the Multiple Choice Question.
- Answer to each question will be evaluated according to the following marking scheme: Full Marks : +4 ONLY if the option corresponding to the correct combination is chosen; Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered); Negative Marks : -1 In all other cases.
- **[:Q.14]** Consider the following frequency distribution:

Value	4	5	8	9	6	12	11
Frequency	5	f ₁	f ₂	2	1	1	3

Suppose that the sum of the frequencies is 19 and the median of this frequency distribution is 6. For the given frequency distribution, let α denote the mean deviation about the mean,

 β denote the mean deviation about the median, and σ^2 denote the variance.

Match each entry in List – I to the correct entry in List – II and choose the correct option.

	List – I	List – II
	(P) $7f_1 + 9f_2$ is equal to	(1) 146
	(Q) 19α is equal to	(2) 47
	(R) 19 β is equal to	(3) 48
	(S) $19\sigma^2$ is equal to	(4) 145
		(5) 55
	$[:A] (P) \rightarrow (5) (Q) \rightarrow (3) (R) \rightarrow (2) (S) \rightarrow (2)$	(4)
	$[:B] (P) \rightarrow (5) (Q) \rightarrow (2) (R) \rightarrow (3) (S) \rightarrow (2)$	(1)
	$[:C] (P) \longrightarrow (5) (Q) \longrightarrow (3) (R) \longrightarrow (2) (S) \longrightarrow (2) (R) \longrightarrow (2$	(1)
	$[:D] (P) \longrightarrow (3) (Q) \longrightarrow (2) (R) \longrightarrow (5) (S) \longrightarrow (2) (R) \longrightarrow (3) (R) \longrightarrow (3$	(4)
[:ANS]	С	

[:SOLN]

$$\sum_{i=1}^{7} f_i = f_1 + f_2 + 12 = 19 \Longrightarrow f_1 + f_2 + 7$$

Median = $6 = 10^{th}$ term

$$\Rightarrow$$
 6 + f₁ = 10 \Rightarrow f₁ = 4

 $\therefore f_2 = 3$

x _i	f _i	x _i f _i	$ \mathbf{x}_i - 7 \cdot \mathbf{f}_i$	$ \mathbf{x}_i - 6 \mathbf{f}_i$	$x_i^2 f_i$
4	5	20	15	10	80
5	4	20	8	4	100
6	1	6	1	0	36
8	3	24	3	6	192
9	2	18	4	6	162
11	3	33	12	15	363
12	1	12	5	6	144
	19	133	48	47	1077

Mean
$$\bar{x} = \frac{\sum x_i f_i}{\sum f_i} = \frac{133}{19} = 7$$

 $\alpha = M \cdot D. (\bar{x}) = \frac{\sum |x_i - \bar{x}| \cdot f_i}{\sum f_i} = \frac{48}{19}$
 $\beta = M.D. (Me) = \frac{\sum |x_i - 6| \cdot f_i}{\sum f_i} = \frac{47}{19}$
 $\sigma^2 = \frac{\sum x_i^2 f_i}{19} - \bar{x}^2$
 $= \frac{1077}{19} - 7^2 = \frac{146}{19}$

Mentors Eduserv: Parus Lok Complex, Boring Road Crossing, Patna-1 Helpline No.: 9569668800 | 7544015993/4/6/7

MATHEMATICS_JEE ADVANCED 2025_PAPER-1 [16] [:Q.15] Let R denote the set of all real numbers. For a real number x, let [x] denote the greatest integer less than or equal to x. Let n denote a natural number. Match each entry in List – I to the correct entry in List – II and choose the correct option. List – II List – I (P) The minimum value of n for which the function (1) 8Function $f(x) = \left[\frac{10x^3 - 45x^2 + 60x + 35}{n}\right]$ is continuous on the interval [1,2], is (Q) The minimum value of n for which $g(x) = (2n^2 - 13n - 15)$ (2) 9 $(x^3 + 3x)$, $x \in R$, is an increasing function on R, is (R) The smallest natural number n which is greater than 5, such (3) 5That x = 3 is a point of local minima of $h(x) = (x^2 - 9)^n (x^2 + 2x + 3),$ (S) Number of $x_0 \in R$ such that (4) 6 $I(x) = \sum_{k=0}^{4} \left(\sin |x-k| + \cos |x-k+\frac{1}{2}| \right),$ $x \in R$, is NOT differentiable at x_0 , is (5) 10 [:A] (P) \rightarrow (1) (Q) \rightarrow (3) (R) \rightarrow (2) (S) \rightarrow (5) [:B] (P) \rightarrow (2) (Q) \rightarrow (1) (R) \rightarrow (4) (S) \rightarrow (3) $[:C] (P) \rightarrow (5) (Q) \rightarrow (1) (R) \rightarrow (4) (S) \rightarrow (3)$ $[:D] (P) \rightarrow (2) (Q) \rightarrow (3) (R) \rightarrow (1) (S) \rightarrow (5)$ [:ANS] В

[:SOLN]	(P) $g(x) = 10x^3 - 45x^2 + 60x + 35, x \in [1, 2]$					
	$g'(x) = 30x^2 - 90x + 60$					
	$= 30 (x-1) (x-2) < 0 \forall x \in (1,2)$					
	∴ range of $g(x) = [g(2), g(1)] = [55, 60]$					
	Minimum value of $n = 9$					
	(Q) g'(x) = $(2n-15)(n+1)(3x^2+3) \ge 0 \forall x \in R$					
	minimum value of n= 8					
	(R) n must be even					
	∴ smallest n = 6					
	(S) $I(x) = \sum_{k=0}^{4} \sin x-k + \sum_{k=0}^{4} \cos(x-k+\frac{1}{2})$	$(:: \cos \mathbf{x} = \cos \mathbf{x})$				
	$\therefore I(x)$ is not different at x = 0, 1, 2, 3, 4					
	i. e. 5 values of x _o .					
[:Q.16]	Let $\vec{W} = \hat{i} + \hat{j} - 2\hat{k}$, and \vec{u} and \vec{v} be two vectors, such that $\vec{u} \times \vec{v} = \vec{w}$ and $\vec{v} \times \vec{w} = \vec{u}$. Let α, β, γ					
	and t be real numbers such that					
	$\vec{u} = \alpha \hat{i} + \beta \hat{j} + \gamma \hat{k}, -t\alpha + \beta + \gamma = 0, \ \alpha - t\beta + \gamma = 0, \ \text{and} \ \alpha + \beta - t\gamma = 0.$					
	Match each entry in List – I to the correct entry in List – II and choose the correct option.					
	List – I	List – II				
	(P) $ \vec{v} ^2$ is equal to	(1) 0				
	(Q) If $\alpha = \sqrt{3}$, then γ^2 is equal to	(2) 1				
	(R) If $\alpha = \sqrt{3}$, then $(\beta + \gamma)^2$ is equal to	(3) 2				
	(S) If $\alpha = \sqrt{2}$, then t + 3 is equal to	(4) 3				
		(5) 5				
	$[:A] (P) \rightarrow (2) (Q) \rightarrow (1) (R) \rightarrow (4) (S) \rightarrow (5)$)				
	$[:B] (P) \rightarrow (2) (Q) \rightarrow (4) (R) \rightarrow (3) (S) \rightarrow (5)$)				
	$[:C] (P) \rightarrow (2) (Q) \rightarrow (1) (R) \rightarrow (4) (S) \rightarrow (3)$					
	$[:D] (P) \rightarrow (5) (Q) \rightarrow (4) (R) \rightarrow (1) (S) \rightarrow (3)$)				

[17]

[:ANS] A
[:SOLN]
$$\vec{u} \times \vec{v} = \vec{w} \neq \vec{0}$$

 $\Rightarrow \vec{u} \perp \vec{w} \text{ and } \vec{v} \perp \vec{w}$
 $\vec{v} \times \vec{w} = \vec{u}$
 $\Rightarrow \vec{v} \perp \vec{u} \text{ and } \vec{w} \perp \vec{u}$
 $\therefore |\vec{u} \times \vec{v}| = |\vec{u}| |\vec{v}| = |\vec{w}| = \sqrt{6}$ (i)
 $|\vec{v}| |\vec{w}| = |\vec{u}| \Rightarrow \sqrt{6} |\vec{v}| = |\vec{u}|$ (ii)
From (i) and (ii), $|\vec{v}| = 1$ and $|\vec{u}| = \sqrt{6}$
 $\therefore \alpha^2 + \beta^2 + \gamma^2 = 6$
Now, $\begin{vmatrix} -t & 1 & 1 \\ 1 & -t & 1 \\ 1 & 1 & -t \end{vmatrix} = 0 \Rightarrow t = 2 \text{ or } -1$
Case I $t = 2$
Case I $t = 2$
Subtracting $\frac{\alpha - 2\beta + \gamma = 0}{-3\alpha + 3\beta = 0}$
 $\Rightarrow \alpha = \beta$
Similarly $\beta = \gamma \therefore \alpha = \beta = \gamma = \pm \sqrt{2}$
Case II $t = -1$
 $\alpha + \beta + \gamma = 0$ and $\alpha^2 + \beta^2 + \gamma^2 = 6$
 $\alpha = \sqrt{3} \Rightarrow \beta + \gamma = -\sqrt{3}$ and $\beta^2 + \gamma^2 = 3$
 $\Rightarrow (\beta, \gamma) = (0, -\sqrt{3})$
or $(-\sqrt{3}, 0)$
But, $\vec{u} \cdot \vec{w} = 0 \Rightarrow \alpha + \beta - 2\gamma = 0 \Rightarrow \beta - 2\gamma = -\sqrt{3}$
 $\therefore \gamma = 0, \beta = -\sqrt{3}$

[18]